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Abstract 

In this dissertation, the asynchronous direct-sequence code division multiple access 

(CDMA) communication system is described and a number of multiuser detection 

approaches are proposed that improve upon the performance of the conventional basesta- 

tion. Both coded and uncoded systems are studied for nondispersive, additive white 

Gaussian noise (AWGN) channels. 

For the uncoded system case, the multiuser detection techniques that have already 

been proposed are first reviewed. Then, two decision feedback equalizers (DFE's) that 

have been proposed are combined to form a new hybrid DFE which outperforms the oth- 

ers in situations where the multiuser interference in the system is high. 

Next, the case where each user in the system employs a convolutional code to 

improve its performance is studied. First* the optimal multiuser sequence estimator is 

formulated, and it is shown that this receiver may be implemented using a Viterbi algo- 

rithm which operates on a time-varying trellis with a number of states which is exponen- 

tial in the product of the number of users in the system and the constraint length of the 

codes used (for the rate-1/2 code case). Because this optimal receiver has a very high 

complexity, a variety of suboptimum receivers are proposed which have a performance 

level near that of the optimal receiver's but have a more manageable complexity. All of 

the approaches are compared on the basis of their performance (through analysis and 

simulation), their complexity and their decoding delay. 
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Chapter 1 Introduction 

Multiple access communication systems are systems in which several (or many) 

users share a common communication channel of some kind. Generally, in these types of 

systems there are many more potential users than there are channel resources to accom- 

modate them all at the same time. As a result, it is not possible to dedicate a fraction of 

the channel resource to every potential user. Fortunately, the users of this kind of system 

usually need to transmit bursty information messages. As a result, channel resources 

may be allocated to only those users which are active. 

There are a number of methods that have been proposed over the years to allow the 

active users to share the channel resources, or available bandwidth. Some of these 

methods require that the users tightly coordinate their transmissions with each other in 

some fashion, while other methods require much less coordination. All may be inter- 

preted as ways of having the active users coexist in the frequency and time space of the 

channel with an acceptable level of mutual interference. [68] 

The least coordinated method of achieving multiple access communications is to 

have any user that needs to transmit do so using the entire channel while monitoring 

whether there was a message collision with any other user. This technique is often 

referred to as carrier sense multiple access with collision detection (CSMA/CD). If the 

transmitting user senses a collision, it will adhere to the rules of a well defined protocol 

to resolve the collision. This multiple access method requires no central controller to 

dictate when the users must transmit. With this method, if there are a significant number 

of active users, then there are many collisions and a great deal of the channel resources is 

wasted in resolving the collisions. This is a price paid for the lack of centralized control. 

CSMA/CD is most appropriate for systems which cannot tolerate any interference and 

throughput can be sacrificed for performance. CSMA/CD has traditionally found 

widespread application in computer networks which are bursty, are not overly congested, 



and require that there are very few bit errors. For more congested systems which can 

tolerate higher error rates, such as a cellular telephone system in a city, CSMA/CD is not 

appropriate. Figure 1.1 illustrates a cellular communication system with basestations at 

the center of each cell and a number of mobile active users in the cell. 

A more coordinated method of achieving multiple access is to have a central con- 

troller dictate which fraction of the time a particular active user may use. In this method, 

called time division multiple access (TDMA), each active user transmits its message dur- 

ing its assigned time slot in a round-robin fashion, thus the active users transmit at dif- 

ferent times on the same frequency. When an active user finishes its message, it notifies 

the central controller and its time slot is reallocated to another active user. 

A similar method is called frequency division multiple access (FDMA). In this 

method, the central controller dynamically allocates frequency slots to each of the active 

users. Thus, in FDMA, the active users transmit at the same time on different frequen- 

cies. When an active user completes its transmission, it notifies the central controller and 

its frequency slot is given away to another active user. One advantage of FDMA over 

TDMA is that the users do not need to be synchronized with each other in time. Both 

TDMA and FDMA can achieve a higher capacity than CSMA/CD, however, the prices 

paid for this capacity increase some interference between the active users which share the 

channel, the need for a central controller and the added delay associated with the process 

of requesting the channel resources from the central controller. 

A fourth method for achieving multiple access is called code division multiple 

access (CDMA). Li CDMA systems, the active users transmit at the same time on the 

same frequency and the way in which the users can be distinguished or addressed is 

through the use of a code which is impressed on each user's signal. In some CDMA sys- 

tems, a central controller will allocate the codes to each user. In other CDMA systems, 

each user will be assigned a permanent code sequence and there will be no need for a 

central controller. This may be appropriate in a multipoint-to-multipoint system with a 
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Figure 1.1  Illustration of a cellular communication system. Each basestation communicates with the users in its cell. 



modest number of users. In this dissertation, we will primarily concern ourselves with 

cellular-type systems where the basestation of each cell acts as a central controller for its 

cell. 

Because the active users transmit at the same time on the same frequency in 

CDMA, they are, in a sense, continuously colliding with each other. The key difference 

between the collisions of CDMA and CSMA/CD is that the codes which are impressed 

on the CDMA signals minimize the effect of the collisions, while in CSMA/CD the colli- 

sions are not tolerated at all. The higher that the quality of the codes is, the lower the 

mutual interference between the active users will be in a CDMA system. 

A heated debate has erupted in the cellular communications industry over the past 

few years over the relative capacities of CDMA, TDM A and FDMA. Proponents of each 

method tend to distort the capacity calculations in favor of their favorite method. In this 

dissertation, we will not consider a comparison of the relative capacities, but will instead 

focus on CDMA and study methods of detection which ultimately lead to a large capacity 

increase for CDMA over the traditional methods of CDMA detection. 

Two undisputed advantages of CDMA over TDMA and FDMA are its soft perfor- 

mance degradation with the number of users, and its lack of a need for any kind of time 

or frequency coordination between the active users. As the number of active users 

increases in a CDMA network, the interference for each of the active users increases. 

This results in a slow degradation of the performance of every user as the congestion in 

the network increases. In contrast, once all of the time or frequency slots are accounted 

for in TDMA or FDMA, the network is full. If slots are empty in TDMA or FDMA, then 

some of the channel resources are going to waste. Additionally, CDMA does not require 

that the active users coordinate their transmissions in time or frequency as in TDMA or 

FDMA. These uncoordinated CDMA networks are called asynchronous networks. Some 

other important advantages of CDMA over FDMA and TDMA are its robustness to nar- 

rowband fading and jammers, its ability to operate in the background noise of frequency 



bands that are occupied by narrowband users and its inherent privacy. 

The most common form of CDMA in commercial applications is direct sequence 

CDMA. In this form of CDMA, each active user is assigned a different code sequence, 

or signature sequence, and this high-rate sequence modulates the data for that user before 

it is transmitted. Because the signature sequence is a higher rate sequence than the data 

sequence, the effect of this modulation of the two signals is to spread the spectrum of the 

transmitted waveform to a bandwidth related to the signature sequence rate. Thus, the 

direct sequence modulation method is a form of spread spectrum communications. 

The receiver operating in this environment receives a signal which is the sum of all 

of the active user's transmitted signals plus noise, and the receiver's job is to reliably 

decode the signal of interest from this received composite signal. The users are not syn- 

chronized in general, and in addition, the received signal strengths of each user are typi- 

cally unequal. In an attempt to improve the performance of each link, error control cod- 

ing may be used on each of the links as well. The receiver structures that will be studied 

in this dissertation are most appropriate for a basestation in a cellular telephone cell or 

personal communication network (PCN) cell It is also possible, however, that the 

receiver architectures that will be discussed could be one of the user's receivers in a 

decentralized multiple access network. 

The traditional method of coherently demodulating direct sequence CDMA signals 

is to synchronize a local code generator and oscillator to the signal of interest and then to 

make decisions on the received signal as though the desired signal is the only one 

present. The received signal usually consists of the desired signal, a multiuser interfer- 

ence (MUI) signal, thermal/shot noise, and may be further degraded by channel time- 

dispersion. The traditional decoder's structure is that of a correlator or matched filter 

which is matched to the desired signal followed by a decoder if coding is used on the 

link. Figure 1.2 illustrates this conventional receiver or basestation. (The notation used 

in this figure will be defined in Chapter 2.) 
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The performance of the traditional decoder suffers for two major reasons. First, the 

signature sequences of the different users will usually not be orthogonal to each other, 

giving rise to the MUI, and second, in the common situation where all of the signals 

arriving at the receiver are of different strengths, the strong signals tend to overwhelm 

the weak signals, even with reasonably good signature sequences. This second problem 

is referred to as the near-far problem. 

There are two traditional methods for improving the performance of the conven- 

tional receiver. The first is to find an improved set of signature sequences which have as 

high a degree of orthogonality as possible. The effectiveness of this approach is limited 

by the Welch inner product bound, which defines the lowest achievable maximum 

crosscorrelation between asynchronous signature sequences of a given length. The set of 

binary Kasami sequences achieves the Welch bound, although this set of sequences is 

unfortunately rather small. The set of binary Gold sequences is a much larger set, which 

comes close to the Welch bound. Thus there is not much to be gained by attacking the 

problem in this way. [64] 

The second traditional method for improving the conventional receiver's perfor- 

mance is to implement a power control scheme, wherein each user's transmitted power is 

adjusted so that its received signal power at the basestation is the same as that of all of 

the other users' signals. It will be seen later in this dissertation that this approach is a 

solution to the near-far problem, but it is a conservative and somewhat inefficient solu- 

tion. 

, A major improvement over the traditional receiver can be achieved by viewing the 

MUI not as a random noise signal, but instead as a structured interferer. Because all of 

the signals making up the MUI in a CDMA network are generally of the same structure 

as the signal of interest, and because their signature sequences are generally known to the 

receiving system, it is possible to augment the standard receiver structure and exploit this 

knowledge of the MUI. This can be done by estimating MUI and attempting to cancel it, 



or by jointly estimating the entire message. Figure 1.3 illustrates this kind of receiver, 

which is generally referred to as a multiuser receiver. The augmentation required con- 

sists of some additional synchronization circuitry to lock into some or all of the interfer- 

ing signals, and then a decoding algorithm which would use these additional statistics to 

estimate the MUI and cancel it. 

The rationale for using this augmented receiver is that if it is successful in estimat- 

ing the MUI, it will, in many situations, be able to eliminate the near-far problem and 

attendant error-rate floor, and its performance will be approximately that of a single-user 

link. The drawback of this approach is the complexity associated with the additional 

synchronization circuits and the algorithm for estimating and eliminating the MUI. It is 

important to note that in multipoint-to-point networks this additional synchronization cir- 

cuitry must be a part of a conventional basestation anyway, as a basestation must lock to 

and demodulate the signals of all users in the cell served by that basestation. Thus, in 

certain applications, the additional complexity of jointly decoding the signals in the sys- 

tem will not be as great as in others, such as a single user's receiver in a multipoint-to- 

multipoint network. 

It is important to note that this technique is not appropriate in a jamming environ- 

ment where the interfering signal structure is not known. It is also worth keeping in mind 

that if the MUI becomes too severe, the main limitation of the CDMA system may be the 

synchronization of the basestation to each of the user's signal. If the MUI is strong 

enough to prevent the basestation from acquiring the component signals, then no form of 

coherent detection will be possible, conventional or otherwise. Finally, if the MUI is so 

weak that the users do not degrade each other's performance, then the performance of the 

conventional basestation will be essentially optimum. Thus the multiuser detection tech- 

niques described in this dissertation are aimed at the cases where at least some of the 

users in the system suffer in performance due to MUI, but the MUI is not so strong as to 

prevent acquisition of the signals at all. 
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There has been a large amount of interest recently in the design of multiuser 

receivers for CDMA systems. Most of this work has centered on uncoded links, [1] - 

[44]. References [3] and [50] are particularly good tutorial papers on this subject. Only 

recently, [41], [43], [44] [53], has the problem of multiuser detection of coded links been 

considered. 

In this dissertation, multiuser receivers will be examined for both coded and 

uncoded CDMA systems. We will begin by studying the notion of multiuser detection in 

Chapter 2 by examining some of the important multiuser receivers that have already been 

proposed. This theme will continue into Chapter 3 where we will take a detailed look at 

the decision feedback multiuser detection techniques for uncoded links which have 

already been proposed. This discussion will lead to a new hybrid decision feedback 

equalizer which provides superior performance to those that have already been proposed. 

Error control coding is a traditional tool for improving the reliability of communica- 

tion systems. As a result, Chapter 4 will begin our look at CDMA links where each user 

employs a convolutional code to improve performance. In this chapter, the optimal 

sequence estimator will be formulated and its performance will be analyzed both through 

an analytical analysis and through computer simulations. We will see that the optimal 

sequence estimator provides a benchmark for all other multiuser receivers, as it is the 

best we can achieve in terms of sequence error probability. The problem with this 

optimal receiver is that it has a prohibitively high complexity. 

As a result of the optimal receiver's high complexity, in Chapter 5 we will examine 

a large number of suboptimum multiuser receiver architectures. The goal in studying die 

suboptimum approaches is to find a receiver that maintains most of the optimal receiver's 

high performance, while doing so with a much lower complexity. These receivers will 

be studied analytically, whenever possible, and using computer simulations when an 

analysis is not possible. A performance measure will be introduced called the asymptotic 

multiuser coding gain (AMCG), which will be used extensively to compare the various 
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receiver's performances. We will see from this performance analysis that many of the 

suboptimum approaches do achieve nearly-optimum performance with a low complexity. 

In order to discuss the multiuser receivers in Chapters 3, 4 and 5, however, it is 

necessary to lay out the notation and to define the various approaches that have been pro- 

posed by other researchers in the past. This notation and background will be the subject 

of the next chapter. 
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Chapter 2 General Multiuser Detection 

In this chapter, we will begin by outlining the notation which will be used 

throughout the dissertation. This will lead into a precise formulation of the problem 

which multiuser detection seeks to solve. A summary of the various multiuser receivers 

that have been proposed for uncoded links will then be given in order to provide the 

necessary background for the following chapters. Finally, a brief introduction to the 

topic of multiuser detection for coded links will be given to motivate the work in 

Chapters 4 and 5. 

It will be assumed that the CDMA system has K users operating simultaneously on 

a common frequency in an asynchronous fashion. Furthermore, each user may employ 

binary convolutional coding on its link. While it is quite conceivable that block codes 

could be used effectively on a CDMA link, convolutional codes have the advantage that 

they operate in a sequential fashion. Because the decoders that will be studied in this 

work are sequential in nature, the convolutional codes are a much better match to the 

decoders than block codes. Also, in [38] it was shown that in CDMA systems, binary 

convolutional codes often outperform more general trellis codes which map information 

symbols onto M-level signals where M is larger than the alphabet size of the information 

symbols. In other words, there is no particular advantage to using nonbinary coding. 

This may be considered a further justification for the confinement in scope of this work to 

binary convolutional codes. One further assumption in this work is that each user 

employs the same convolutional code, although it is not at all difficult to generalize this 

work to the case where each user employs a different code. 

At each time interval, n, of length Ts, the convolutional code is generated for user k 

by passing P binary information bits, /*(") = U^\n),..., IJt\n))f through a shift register 

consisting of W stages with Q modulo-2 adders, as shown in Figure 2.1. The number of 

output bits for each P-bit input sequence is Q bits. The rate of the code is Rc - P/Q and 
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WP stages- 

encoded sequence to modulator 

Figure 2.1 General convolutions encoder structure. [64] 
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the constraint length of the code is W. The output sequence of binary code bits for the 

interval corresponding to input bits lk(n) is (Dk
l)(n) Dk

Q\n)). Note that for W= 1 

and P = ß = 1, we have the uncoded case, so in that case Dk(n) = Ik(n). 

In the time interval [nTs+iq-l)T-rtk,nTs+qT-rtk), user k transmits data bit Dk
q)(n), 

where % represents the time shift of the k,h user relative to some reference time, thus 

accounting for the asynchronism of the users relative to each other. T represents the code 

bit period and Tb = T/Rc is the information bit duration, thus Ts = QT-PTb. Let 

ijfc = mjfcT-Kjfe, I* e [0,7), and mk e {0,...,Q-1}. Thus mkT is a coarse time shift and xk 

is a fine time shift for user k. 

Each user in the system is assigned a particular signature sequence, and it will be 

assumed that this signature sequence has a duration equal to the code bit interval, 

although this assumption can be relaxed with a change of the notation. We will combine 

the carrier and signature sequence into a single signal, thus the kth carrier multiplied by 

the binary (±1) signature sequence, PNk(t), will be denoted by 

,.    \-€^fPNk{t)cos{(üct)     Q<t<T nu 
W)=j o otherwise {2A) 

We will assume that cocris an integer multiple of 2n to provide phase continuity at the 

code bit boundaries. Note that sk(t) is a unit-energy waveform. The energy of the kth 

user's code bit measured at the receiver will be denoted by £*. It will be assumed that all 

K users transmit their signals through a common additive white Gaussian noise channel 

with two-sided noise spectral density NQ/2, and so the received signal will have the fol- 

lowing form 

rit)= £   £ £ßJt9)(«W^sk{t-nTs-{q-\)T-*k) + z{t) (2.2) 

where z(t) denotes the noise. If there is no coding on the link, Dk(n) = Ik(n) and 

Ts = Tb = T, so (2.2) may be rewritten in a simpler form. 
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'(')= £   ^DMJE;sk{t-nT->ik) + z{t) . (2.3) 

Because it is more notationally cumbersome to discuss the coded link case, we will use 

the uncoded link case for the remainder of this chapter and the next to introduce the sys- 

tem model and some of the receivers that have been proposed in the literature. As a 

result, for the remainder of this chapter and Chapter 3, we will use equation (2.3) to 

represent the received signal. In Chapters 4 and 5, where the coded link case will be dis- 

cussed in detail, we will resort to the use of equation (2.2) to represent the received sig- 

nal. 

Next we define the partial cross-correlation of the known signature sequences of 

users j and k to be: 

oo 

P;*(0 = J Sj(t-*j)sk(t-lT-Vk) dt . (2.4) 

It is worth noting that p#(0) = 1 and p^(/)=pjyH). 

We will assume that the front end of the receiver consists of a bank of K matched 

filters or correlators, each matched to one of the transmitted waveforms in the system. 

(Note that Figures 1.2 and 1.3 illustrate a correlator implementation of the matched filter 

bank.) It was shown in [1] that the complete set of matched filter outputs generates 

sufficient statistics for the demodulation of each user's data. In Chapter 4, we will not 

make this assumption about the front end, but will ultimately arrive at the result that the 

optimal sequence estimator may be implemented with the matched filter bank front end. 

The output of the filter matched to the k,h signal at time (n +l)r+T* is 

(ji+i)r+i* 

rk(n)=   j   r(t)sk(t-nT-*k)dt (2.5) 

where perfect synchronization has been assumed here between the kth component of the 

received signal and the local signature sequence generator at the receiver. 
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Substituting for r(t) in equation (2.3) and integrating, we obtain 

jr       jf 

rk(n)= X Pkj(-Wj(n-l)^E]'+3:pkj(0)Dj(n)^Ej 
j=k+i j=i 

+ kjr,Pkj(Wj(n+l)jE]'+zk(n) (2.6) 
j=i 

Note that because the system is asynchronous, these matched filter outputs become avail- 

able at different times for each user and interval. Figure 2.3 illustrates a time line for 

each user in the system. Without a loss in generality, we assume that the users are 

ordered according to increasing %%. 

This set of K equations for the K received signals can be denoted in the following 

compact matrix form: 

Ä(n) = £[p(-l)D(n-l) + p(0)D(n) + p(l)5(n+l)] + Z(n) (2.7) 

Here p(m) is the signature correlation matrix for lag m, which is KxK. £ is the KxK 

diagonal energy matrix with the kth diagonal term being *$*. D(n) is the Kx 1 data 

vector holding each user's independent and identically distributed data at time n, and 

Z(n) is a Kx 1 vector of noise variates which are Gaussian random variables colored 

both spatially and temporally as shown below. The noise variables have zero mean and 

covariance matrix 

C(m) = ~p(m) (2.8) 

for the mth time lag. These matrices are Kx K at each time lag. NQ/1 is the two-sided 

noise spectral density. 

For the case where there are two users in the system these matrix equations take the 

following form: 
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Figure 2.2 Discrete time vector model of the multiuser CDMA channel. 
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Figure 2.4 Discrete time model of a 2-user CDMA channel. 
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ri(n)] _ [o P12H)   V^7    0 
r2(n) ~ 0      0 0    ^ 

0     0 
P2i(D 0 

and the covariance matrix will be 

Ddn-l) 
D2(n-1) 

1     Pn(0) 
Pi2(0)     1 

VE7   0 
0 ^n 

Diin) 
D2(n) 

1 
1 

^r 0 
0 ^ D2(n+1) 

zi(n) 
z2(n) (2.9) 

C(m) = 
No &(m) pi2(-l)8(m-l) + p12(0)5(OT) 

p12(0)8(m) + P21 (l)8(m+l) 5(m) (2.10) 

The matrix p(l) will be lower triangular in general, and the matrix p(-l) will be upper 

triangular in general. 

As we noted from definition (2.4), pi2(-l)=p2i(1)- This implies that in the general 

K user case, p(-l) = pH(l) and furthermore that p(0) is a Hermitian matrix. Also, it is 

important to note that p(i) = Ö when lil > 1 due to the one symbol interval support of the 

waveform Sk(t), and in addition, that the noise sequence within a given channel 

{Zk(n)} JT=—• is temporally white. 

At this point, the continuous-time CDMA waveform channel has been cast into the 

form of a discrete-time vector channel. The equivalent vector model is shown in Figure 

2.2 in the z-domain for simplicity. In this figure, H(z) is the channel transfer function 

matrix, and Ä(z) is the transfer function matrix of a filter which properly colors the noise. 

The receiver's job might be to observe the sequence of matched filter outputs and to 

make an estimate of the entire data sequence D in the uncoded case and / in the coded 

case, or it might be to perform some form of symbol-by-symbol detection. R(n) consists 

of a filtered version of D(n) in noise which is both spatially and temporally colored 

according to C(m) = p(m)NQ/2. Due to the necessary synchronization circuits at the 

front end of the receiver, all of the signal cross-correlations can be generated at the 

receiver using at most K(K+\)/2 correlators, since we would need to dedicate at most 

one correlator to the computation of P;*(/) for each j and k pair. (If the channel transfer 

function matrix is not changing quickly, it may be possible to generate the signal cross- 
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correlations using a much smaller number of correlators in a time-sharing fashion.) As 

long as the receiver's synchronization circuits are locked to the appropriate component of 

the received signal, the normalized transfer function of the channel, p(z) will be measur- 

able. In addition, if we assume that the receiver has gain estimation circuits built into the 

synchronization stage of the receiver, the energy matrix, E will also be known. Finally, 

the correlation matrix of the noise can be constructed easily from the locally generated 

signal cross-correlations. Throughout the rest of this work, we will make the assumption 

that the energies and cross-correlations of all of the users have been estimated perfectly, 

i.e. H is known. 

2.1 Possible Receiver Structures for the Uncoded Case 

The receiver's goal is to minimize the probability of error for the channel of 

interest. The traditional receiver for the kth user will simply make a zero-threshold com- 

parison on the observed statistic, rk(n), at each symbol interval, n. This detection stra- 

tegy is optimal if the only available statistic is rk(n) and we have no knowledge of the 

structure of the interference, or if the signature sequences are mutually orthogonal, which 

is generally not the situation in the asynchronous case. If all of the other received statis- 

tics are available as well, in an augmented receiver or a basestation in a cellular network, 

then this knowledge may be used to perform a joint estimation of the sequences. (See 

Figure 1.3) This kind of augmented receiver is referred to in the literature as a multiuser 

receiver. 

There are many multiuser receivers that have been proposed in the past decade. (See 

[1] - [44]) These approaches can be broadly grouped together in three main categories: 

trellis and tree-based approaches, linear equalizer approaches and decision feedback 

approaches. There are many many multiuser receivers that have been proposed in each 

of these categories. Furthermore, some of these receivers do not fit cleanly into one of 

these categories, but instead are hybrids of two of the approaches. Rather than discuss 
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each of the previously proposed receivers individually, we will discuss the three 

categories. In our discussion of each category, we will cite some of the key representa- 

tives of that approach. 

2.1.1 Trellis/Tree-Based Approaches 

The broad category of approaches which we refer to as trellis and tree-based include 

all decoders which operate by searching a either a trellis or a tree for the most likely 

sequence that was transmitted. As we will see, this search will result in the maximum 

likelihood sequence estimate of the transmitted data if the optimal metric is used and the 

search is performed with the Viterbi algorithm in a trellis with 2K~l states for a K user 

system. 

Due to the finite alphabet of the input data symbols to the known matrix FIR chan- 

nel filter H(n), the multiuser detection problem may be considered to be one of estimat- 

ing the inputs to a finite-state machine in colored Gaussian noise. The minimum proba- 

bility of sequence error decoder for all of the users would then correspond to the max- 

imum likelihood decoder if all of the input sequences were assumed to be equally likely. 

It was shown in [1] that the maximum likelihood sequence estimator (MLSE) can take 

the form of a Viterbi algorithm which traverses K stages of a 2K~l state cyclically time- 

varying trellis in one bit period of the individual users in the system. The optimal metric 

at stage n of the trellis takes the form: 

AB(DB,oB_1) = An_1(5n_1,oB_2) + Xn(Dn,on_1) (2.11) 

where Dn represents all of the data bits for all of the users up to time interval n, c„-\ 

represents the state at the end of stage n -1, and 

Xn(Dn,an-i) = Dm(a(n)) V%«) [2rKn)(a(n))-Dm(a(n)) V%„) PuwuooCO) 

"2 £ Dm(a(j))^E^PmmW)~0-(n))] (2.12) 
yöi-l 

where ß(n) and a(n) are the resulting components of a modulo-ÜT decomposition of the 
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integer n, i.e. n=oc(n)K + ß(n) with ß(n) < £ 

It is significant that the crosscorrelation P^„)M(OL(JH*(n)) in the last term of equa- 

tion (2.12) is zero for In-;' I £ K. This implies that the limits of the sum can be reduced 

to the values over which pK„^(j)(CL(j)-a(n)) & nonzero, namely from j =n-(K-l) to 

j=n-l. The number of terms in this sum of the final term and correspondingly, the 

number of past data bits that affect the stage metric is K-l. Because the state is defined 

as the past data bits affecting the stage metric, we see that the state of the system is given 

by 

<Jn-i = [%»-i)(a(«-D). %n-2)(a("-2)) D^n.K+l)(ain-K+l)) ] (2.13) 

and since each data bit is binary, we get the result that there are 2K~l states that are pos- 

sible for (2.13). 

Because the metric must be computed for both of the paths that emanate from each 

of the 2K~l states at each trellis stage, and because with each stage one bit is estimated, 

we may say that the time-complexity per estimated bit is TCB = 0(2x2 ~ /l) = 

0(2*), [1]. It is interesting that an earlier formulation of this problem used the philoso- 

phy that the system should be modeled as a vector state machine, [25]. This approach 

implies that the state is determined by the K bits from the previous interval, n -1, and the 

current input is the vector of the K bits, one for each user, in interval n. This approach 

had a time-complexity per estimated bit of TCB = 0([2K2K]/K) = 0(22K/K). The 

approach in [1] which does not view the problem as a vector problem is clearly less com- 

plex. 

The obvious drawback of the Viterbi algorithm in this application is that the com- 

plexity of the state machine is exponential in K, the number of users in the system, and 

the receiver complexity will be excessive for a large system. It is therefore interesting to 

consider suboptimum solutions which are less complex than the optimal sequence esti- 

mator. 
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If the search is somehow performed on a trellis with fewer states and if a metric 

other than the optimal metric is used, the performance will be worse than that of the 

optimal MLSE by some amount. The goal of reduced state sequence estimation (RSSE). 

is to operate on a trellis with fewer states than the optimal MLSE, while still performing 

nearly as well as the optimal decoder. The key advantage of RSSE is that if the number 

of states is reduced significantly from 2K~l, then the complexity savings for the decoder 

will be large. RSSE was introduced in [47] and [57] - [60] for the intersymbol interfer- 

ence (ISI) problem, and has also been studied for use with trellis codes and convolution^ 

codes. [47] This idea has recently been applied to the simplification of the optimal 

sequence estimator of [1] in [8] and [56]. The complexity of the RSSE decoder will 

depend on how much the optimal trellis of 2K~X states has been reduced. The perfor- 

mance is also a function of the degree of reduction that is performed. 

It is also possible to view the problem as a search in a tree. Sequential decoding 

approaches are sparse tree search procedures which are useful for applications like 

decoding convolutional codes with very large constraint lengths and equalizing ISI when 

the channel's impulse response is long. As with RSSE, sequential decoding approaches 

provide a tradeoff of complexity versus performance. Naturally, these approaches can be 

an attractive way to reduce the optimal sequence estimator's high complexity. In [14], a 

modified Fano metric was used with the stack algorithm to simplify the decoding opera- 

tion and still maintain a performance level near that of the MLSE. 

2.1.2 Linear Approaches 

The idea in these approaches is that decision statistics will be formed from linear 

combinations of the matched filter outputs, or more generally from linear operations on 

the received signal. Focusing, for now, on the first approach, we again consider the 

discrete time vector model of the channel from the input signals to the matched filter out- 

puts as is illustrated in Figure 2.5. The Z-transform of the sequence of vector of matched 
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Figure 2.5 Discrete time vector model of the multiuser CDMA channel with a linear receiver. 
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filter outputs is denoted by R(z). This sequence of received vectors is passed through a 

linear filter with transfer function matrix, B(z). The resulting decision statistics vectors 

are then compared with a threshold of zero, term by term, to produce the decision vector, 

D{n), in the n* time interval. The Z-transform of the sequence of decision vectors is 

denoted in Figure 2.5 by D(z). 

The obvious question which arises with this approach is what values should be used 

in the B matrix to minimize the error probability of the decisions. This problem, unfor- 

tunately, is not analytically tractable, and so alternate performance criteria must be 

adopted. The two most common criteria for solving this problem for linear equalizers for 

single-user systems which suffer from intersymbol interference (ISI) are the niinimum 

mean squared error criterion (MMSE) and the zero-forcing criterion. Both of these cri- 

teria have been applied to the multiuser detection problem. 

In [4] and also essentially in [17], the decorrelator receiver was proposed. This 

receiver is the multiuser analog of the zero-forcing linear equalizer for the ISI problem. 

The solution for the decorrelator is that B(z) = p"1^), or in words, for the decorrelator 

the linear filter is chosen to invert the normalized channel transfer function matrix. 

Because this receiver will form a portion of a multiuser receiver which will be pro- 

posed in Chapter 5, we will review the basic mathematics behind the decorrelator. Since 

the Z-transform of the sequence of received vectors is given by 

R(z) = p(z)E(z)D(z) + Zfe) (2.14) 

it follows that the decorrelator's decision statistic vector sequence will have Z-transform 

B(z)R(z) = p-\z)p{z)E{z)D{z) + ?~\z)Z{z) = E(z)D(z) + p _1 (z)Z(z)    (2.15) 

Let the decorrelator's output noise vector sequence have Z-transform 

Z(z) = p~1(z)Z(z) (2.16) 

Equation (2.15) shows that the decorrelator has eliminated the multiuser interference 
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caused by p(z), however, in general, the variance of Ik(n) will be larger than that of 

Zjk(n). (zjfc(rt) represents the noise on the kth user's nth decision statistic.) Let the covari- 

ance matrix of this noise be denoted by 

*jk(l) = E[zj(n)zk(n-l)] (2.17) 

The Z-transform of the covariance matrix sequence may be written as 

Zr[ö(n)]=£[Z(z)F(z)]=£[p-Hz)ZWZrfe)p"r(2)] = P"HO^o/2    (2.18) 

since E [Z(z)ZT(z)] = P(Z)NQ/2. This is obtained from taking the Z-transform of equa- 

tion (2.8). Finally, it is not difficult to show that E[z*(n)]=0, and 

Var [zjfe(n)] = $^(0)-iV(/2. Because <&**(0) will be greater than one, the noise variance is 

enhanced by some amount. Thus, the decorrelator linearly combines the matched filter 

outputs in such a way so as to eliminate the MUI, but in doing so, the noise variance is 

increased. This is the same effect which is observed for the zero-forcing linear equalizer 

for the ISI problem. 

The MMSE linear receiver that was discussed in [13], [21] and [24]. The transfer 

function of the MMSE receiver turns out to be 

B(z) = (p(z)+7w0/2)-1 (2.19) 

From this equation, it is easy to see that this receiver reduces to the decorrelator when the 

background noise in the multiuser system goes to zero, NQ/2-^0. In the case where there 

is background noise, the MMSE receiver can outperform the decorrelator because it 

minimizes the variance of both the MUI and the noise. 

Other linear receivers have also been introduced in the literature, see for example 

[4], however we will not review these approaches in this work. The interested reader is 

referred to the references. 

One final thing to note about the linear approaches is that they generally have a 

linear complexity in K. The size of the receiver's matrix filter, B(n) isKxK,so2K+l 
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new FIR filters must be added to the matrix filter when user K+1 enters the system. The 

ideal decorrelator and MMSE FIR matrix filters can not be realized with a finite number 

of taps, however the filter impulse response would inevitably be truncated at some depth, 

8. It therefore follows that the number of multiplications which are necessary for each 

bit decoded is roughly 0($K2/K) = 0(bK). The complexity associated with the tap 

computation is a "one time" cost, as the taps only need to be computed once as long as 

the channel conditions do not change. However, if new users enter and leave the system 

often or if p(z) changes with time, the new filter taps have to be recomputed often and 

this would make the complexity of these approaches much higher. Furthermore, taking 

the inverse of a polynomial matrix is not an easy task. 

2.1.3 Decision Feedback Approaches 

The decision feedback approach to the equalization problem is not linear, but 

instead involves feeding back tentative decisions in some fashion to attempt to cancel the 

multiuser interference. DFE structures were studied in [6], [7], [12], [13], [20], [22] - 

[24]. In the literature, some of these approaches are called multistage receivers, some are 

called successive cancellation receivers and some are simply called DFE's. Chapter 3 

will present a number of the various approaches in a unified way to illustrate their com- 

monality and we will use the term DFE to refer to this class. The decision feedback 

approach will be discussed in detail in that chapter and a hybrid DFE will be developed 

which outperforms the nonlinear DFE's proposed to this point. These DFE approaches 

will also turn out to have a linear complexity with K. 

2.2 Possible Receiver Structures for the Coded Case 

After we discuss DFE's in Chapter 3, we will move on to consider multiuser detec- 

tion for coded links. Consider for a moment CDMA links where each user employs a 

convolutional code.   The basestation that will be referred to as the conventional 
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basestation on this coded link attempts to estimate the kth user's data using only the 

matched filter outputs for the kth user, (see Figure 2.6). It will be assumed that the 

Viterbi algorithm operating on each user's observed code symbols is a soft-decision 

Viterbi algorithm having a decoding delay which generally will be several times the con- 

straint length, W, of the code. The time complexity per decoded bit for this receiver may 

be estimated by considering the number of metric computations per information bit 

decided. If we define the binary memory order of the encoder to be K = log25, where S is 

the number of states of each user's encoder, then there are 2K+P metrics computed for 

every P bits decided, so TCB = 0 (2K+P/P). 

As in the uncoded case, there are a number of ways that a multiuser receiver can 

operate to improve upon the performance of the conventional basestation. In the Chapter 

4, the optimum sequence estimator will be derived for this problem and analyzed. 

Because this receiver has a very high complexity, in Chapter 5 a broad range of subop- 

timum receivers will be introduced which have a lower complexity than the optimal 

sequence estimator and still maintain high performance levels in many cases. The only 

work that has appeared in the literature on this topic at this time are [44], [53], [41] and 

[43]. These approaches will all be unified in Chapter 5 and their performance will be 

analyzed whenever possible. 

Before moving on to the coded case, however, we will consider DFE's for the 

uncoded case in the next chapter. These DFE's which will be examined in Chapter 3 will 

form the foundation for a number of the suboptimum low-complexity receivers of 

Chapter 5. 
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Chapter 3 A New Nonlinear Decision Feedback Equalizer 

To begin our discussion of the possible DFE structures, we will focus on two non- 

linear multistage-style DFE algorithms that have already been proposed. By comparing 

them, we will be led to the hybrid structure which is the real focus of this chapter. We 

will see that the new hybrid structure greatly outperforms the previous DFE's in most 

situations. 

The multistage algorithm proposed by Varanasi and Aazhang in [6] can be viewed 

as a form of a DFE that is appropriate for the multiuser problem, although it has a dif- 

ferent structure from the DFE's used in the ISI problem. In [6], it was assumed that Ihe 

matched filter outputs were delayed appropriately so that they all became available to the 

multistage algorithm at the same time. In this discussion, we will present the algorithm 

in an equivalent sequential fashion because it will lead naturally to the DFE proposed in 

[13] and the hybrid DFE to be proposed in Section 3.1. For the purposes of this discus- 

sion, this algorithm will be referred to as Varanasi's DFE or as Varanasi's algorithm. 

In Varanasi's multistage algorithm, a hard decision is made on each matched filter 

output and the output is stored in a buffer as is illustrated in Figure 3.1. This buffer has 

an output which is available to the multistage algorithms operating on the other 

sequences of matched filter outputs. This hard decision and storage forms what is 

referred to as the first-stage of the algorithm. The second-stage uses a delayed matched 

filter output and the tentative first-stage estimates of each user's bits to obtain a better 

second-stage estimate of the appropriate user's bit. Because the actual MUI for user j at 

time interval n is given by 

MUIj(n) = £p;z(l)A(n+lh/Ei"+ £p/(0)D|(»W5~ 
/=i i*j 

+ X P/C-DDIOI-IWS" (3-D 
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Figure 3.1 A 3-stage version of the multistage algorithm proposed byVaranasi and Aazhang in [6]. 
Iterative estimation of user j's bit sequence shown. 
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the idea is to use first-stage estimates of each of the D,(&) values in (3.1) to estimate this 

MUI. The values of Pß(k) are again obtained by cross-correlating the local signal gen- 

erators at the front end of the receiver which are synchronized to the actual signal of 

interest, and the values of ^JEi are obtained by estimating the signal strength of each 

user. 

In the second-stage, the estimated MUI is subtracted from the delayed matched filter 

output and the resulting real number is compared with a zero threshold. The result is 

placed into the appropriate position in the second-stage buffer and again this buffer posi- 

tion is accessible for each of the other multistage algorithms which operate on the other 

users matched filter output sequences. This procedure can be performed as many times 

as is desired, but there is a number of stages beyond which very little additional gain is 

achieved by adding stages. [12] 

A second DFE structure was proposed by Xie, Short and Rushforth in [13], and for 

the purposes of this discussion, this structure will be referred to as Xie's DFE or Xie's 

algorithm. Xie's DFE was not proposed as a multistage algorithm, but instead as a vari- 

ant of the more traditional ISI-style DFE structure. This algorithm can also be viewed as 

a two-stage multistage algorithm, however. It is in this spirit that it is presented in Figure 

3.2 so that it can be easily compared with the multistage algorithm of Figure 3.1. 

The first-stage of this DFE is again a conventional detector which simply makes 

hard decisions on the matched filter outputs and stores the estimated bits in a buffer. 

This section of the DFE was viewed by Xie et al as a nonlinear feedforward portion and 

the second-stage was viewed as a nonlinear feedback portion. This view connects it with 

the ISI equalizers which have linear feedforward portions followed by nonlinear feed- 

back portion. 

The MUI which corrupts each matched filter output is described by equation (3.1) 

and may be broken up into two parts. One part consists of bits which trail the bit being 

decided in time and have already been estimated at the second-stage level. This portion is 
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Figure 3.2 The decision feedback equalizer proposed by Xie, Short and Rushforth in [ 13] shown in the 

form of a 2-stage multistage algorithm. Estimation of user j's bit sequence is shown. 
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called the past portion of the MUI, and for user j at time interval n -1 it can be written as 

PMUIJ(n-l) = J;£pji(0)Dl(n-l)tä+ £ p;/(-l)D/(n-2)^ (3.2) 
/=i i-j+i 

The second portion of the MUI consists of bits which have not yet been estimated by the 

second-stage and so first-stage estimates of these bits must be used. The future portion 

of the MUI for user j at time interval n -1 can be expressed as 

FMUIj(n-l)=Zf)fl(l)Di(n)tä+ £ pß(0)Di(n-l)^ (3.3) 
/=l /=y+i 

which is the portion of (3.1) which is not included in (3.2). 

It should be apparent at this point that the process carried out by this DFE can be 

extended easily to more stages by using the second-stage estimates of the data as bits in 

the future portion of a third-stage MUI estimate. This may in some cases provide better 

data estimates than are available from a two-stage equalizer. 

A major difference between the two multistage algorithms is that Varanasi's DFE 

uses exclusively first-stage data estimates in its second-stage MUI estimate, while Xie's 

DFE uses as many of the more reliable second-stage data estimates as are available at the 

decision time for the jth user's data. It is thus expected that Xie's DFE will typically 

outperform Varanasi's two-stage multistage algorithm. 

A major drawback of both algorithms, however, is that they both rely upon a con- 

ventional detector as their first-stage. It will be shown in the next section, that in a severe 

MUI environment where either the cross-correlation between adjacent users is very high, 

or there are enough moderately cross-correlated users to produce the situation where the 

MUI term is larger than the desired signal term, this conventional first-stage badly limits 

the performance of these equalizers. It is for this reason that we propose a hybrid equal- 

izer which does not use a conventional first-stage. This hybrid decoder will be shown to 

perform better in the severe MUI environment than the other DFE's examined so far 

because it will use a better first-stage. This decoder and a variety of simulation results 
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comparing all of these DFE structures are the subjects of the next two sections. 

3.1 The Hybrid DFE 

Figure 3.3 illustrates two stages of an alternative multistage DFE. The first-stage is 

not a conventional detector which simply makes hard decisions on the matched filter out- 

puts, but is instead a nonlinear decision feedback equalizer itself. Due to the need for 

causality of the equalizer, however, not all of the MUI can be estimated at the first-stage, 

and so only the past portion of the MUI can be reconstructed. In this way, the first-stage 

makes an attempt to estimate the past half of the MUI in the first-stage and subtracts the 

influence of those data bits from the appropriate matched filter output. Thus the first- 

stage data estimate for the jth user's nth data bit will be the following: 

Df\n) = sgn[ rj(n) - PMUlf\n) ] (3.4) 

where sgn [•] is the signum function which performs the zero-threshold comparison and 

PMUI?\n)=J±pß(0)D<ll\n)tä+  £ pfl(-l)D^n-l) fö (3.5) 

The subsequent stages operate in the same way as the second-stage of Xie's DFE. Here 

because of the delay imposed, the n -Ist data bit will be estimated at time n by: 

bf\n -1) = sgn[ rj(n -1) - PMUlf (n-1) - FMUlf\n -1) ] (3.6) 

where 

1 K 

PMUlf\n-l)=J:Pji(0)D<i2\n-l)JE;+  X Pß(-1) D\2\n-2) ^     (3.7) 
i=i i=j+i 

FMUlf\n-l)=J±Pß(l)D\l\n)ylE;+  X pß(0)D?\n-l) JW        (3.8) 
2=1 l=j+l 

Note that if the feedback is correct and the energies and crosscorrelations are perfectly 

estimated, the MUI will be perfectly cancelled. If the feedback is incorrect for a particu- 

lar bit, then that bit's contribution to the interference will effectively be doubled. 
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Figure 3.3 A hybrid multistage algorithm with 2 stages shown for estimating user j's bit sequence. 
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It is assumed in the algorithm above that the delay between each of the user's data 

bit intervals (ie. Xj^tj-i for each j) is large enough to allow the computation of equa- 

tions (3.4) and (3.6) for the ;-l* user so that the results can be stored in buffers before 

they are accessed by the ;* user's multistage algorithm. To insure that the proper data 

bit is used in the computation of the MUI, a status bit could be used to indicate whether 

the data residing in the latch holding the data bit of interest is the desired data bit or that 

from one symbol period earlier, which would be the case if the computation has not yet 

been completed for user j-1. The jth user's multistage algorithm should then wait until 

the status bit for the ;-l* user's data shows that the data is ready before computing the 

MUI estimate for the j* user at that stage. In this way, assuming that the computation of 

each user's data bit at each stage takes less than T/K seconds, where T is the bit period 

for each user and K is the number of users, the DFE will be able to operate in real time. 

This hybrid algorithm combines the best parts of each DFE, namely Varanasi's mul- 

tistage flexibility, and Xie's breaking up of the MUI into future and past portions which 

allows the past half of the MUI to be estimated by more reliable /* stage data estimates 

at the ith stage. The distinguishing feature of the hybrid multistage algorithm is the 

first-stage which attempts to cancel half of the MUI terms as opposed to the conventional 

first-stages of both of the other equalizers. 

3.2 Simulation Results 

In this work, the various receivers were simulated for a four-user system. The 

values of the cross-correlations were exaggerated to simulate a highly bandwidth 

efficient CDMA network. Figure 3.4 shows two sets of signature sequences for a four- 

user system (the complex envelopes of the signals are shown assuming a carrier phase of 

zero). The resulting crosscorrelation structure is also shown in this figure. There are 

many signature sets and delays, in general, which yield the same crosscorrelation struc- 

ture, and so the signature sets which are shown are provided only to illustrate that the set 
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Figure 3.4b A second set of signature waveforms and delays which yield the more severe correlation structure show 
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of crosscorrelations simulated are achievable. (It is possible to construct correlation 

matrices which are not in the range of achievable values.) Both signature sets shown are 

constructed to provide a high level of MUI which is fairly balanced between the users. 

This choice of signature waveforms does not necessarily represent an intelligent choice 

of waveforms for this particular chip-to-symbol rate ratio. It is also probably safe to say 

that if the MUI was much more severe than that simulated in these examples, then the 

dominating problem would most likely be that of the initial acquisition of the local oscil- 

lators and code sequence generators at the front end of the receiver rather than the perfor- 

mance of the multiuser detectors if synchronization is achieved. 

The simulations were performed in the MATLAB environment using the Monte 

Carlo simulation technique and twenty thousand transmitted bits for each user. The 

transmitted bits were a random sequence of binomial random variables with a probability 

of each value being a half (note that sending the all +l's sequence or all -l's sequence 

does not produce realistic MUI for the other users). The noises were colored properly by 

generating multidimensional scaled Gaussian random variables for each subinterval of 

the bit period delineated by the dotted lines in Figure 3.4, and then projecting the random 

variables onto the subsections of each waveform and finally summing up the projections. 

It was verified that this method yielded properly colored noise. 

Figure 3.5 illustrates the performance of the various DFE structures, and the max- 

imum likelihood sequence estimator (MLSE) for the channel of Figure 3.4a. In this 

graph, all four users have the same energy level and the performance shown is the aver- 

age of all of the user's performances. Also, the performance of a single-user system is 

shown. As expected, Xie's DFE slightly outperforms the second-stage of Varanasi's 

multistage algorithm due to the decomposition of the MUI into future and past parts. The 

the hybrid algorithm is able to outperform both of the other DFE approaches. 

Figure 3.6 shows the performance of user 1 in a case where E/Ei = 10 dB for 

j = 2,3,4 and the channel of Figure 3.4b. In this case the three-stage hybrid algorithm 
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Figure 3.5 Performance curves for a single-user system, a conventional CDMA receiver, the 
Varanasi multistage algorithm, the Xie DFE, the optimal MLSE and the hybrid algorithm in the 
4-user channel shown in Figure 3.4a. Varanasi's Multistage and Xie's DFE are shown as dotted 
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nearly perfectly cancels the MUI while the other multistage algorithms are hardly able to 

perform better than the conventional decoder. 

Figure 3.7 shows the performance of user 1 for the channel of Figure 3.4b as the 

energy of the interfering users is varied and Ex/N0 is fixed at 4 dB. The interesting 

feature of the graph is that both the optimal sequence estimator and the two and three- 

stage hybrid DFE's are resistant to the near-far problem on this channel, while the 

Varanasi and Xie DFE's are not. This implies that for this case, the MLSE and hybrid 

DFE achieves the single user performance level for sufficiently weak and sufficiently 

strong interference while the Varanasi and Xie DFE structures only achieve it for 

sufficiently weak interference. This is due to the fact that as the energy of users 2,3 and 4 

becomes large with respect to the energy of user 1 and the noise, user 2's and 4's conven- 

tional first-stage has a decision statistic which is dominated by MUI (the MUI term is 

larger than the desired signal term). Thus as Ej/E\-**> and correspondingly 

Ej/N0->ooJ =2,3,4, the probability of error for users 2 and 4 does not approach zero and 

so there will always be some interference doubling for user l's decision statistic due to 

incorrect feedback. (Recall that when the feedback is incorrect, the interference is dou- 

bled, rather than being cancelled.) Because in this regime, £/>£i, any incorrect feed- 

back of one bit decision will lead to an error with probability 1/2. This implies that the 

probability of error for user 1 must be greater than the the probability of error that user 1 

would have in the absence of MUI. 

In the less severe channel of Figure 3.4a, the Varanasi and Xie versions of the DFE 

are able to acheive the single-user performance level for both sufficiently strong and 

. sufficiently weak interference. This is illustrated in Figure 3.8. 

The bottom line in all of these simulations is that the hybrid algorithm outperforms 

the other algorithms in situations where the conventional first-stages of the Xie and 

Varanasi DFE's perform badly. In addition, the performance of the hybrid DFE is near 

that of the optimal MLSE over a wider range of MUI levels than for the other DFE's. 
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Because the complexity of the hybrid DFE is not much greater than that of the other 

DFE's (one additional "past MUI estimator" and an adder are necessary for each user), 

and because the the typical desired operating region for a CDMA network is that with 

many users, and thus severe MUI, the hybrid DFE is an attractive approach. A nice 

feature of all of the DFE's discussed here is that they may be implemented in a parallel 

fashion easily, since it is possible to use multiple processors with a common memory to 

realize the algorithms. This feature will allow the DFE's to be applied to systems with 

many users. 

3.3 Extensions 

The two nonlinear DFE's that have been proposed for CDMA networks led to the 

development of a hybrid DFE which outperformed the others in all of the situations 

simulated. We considered only nonlinear DFE's, although it is also possible to combine 

these DFE's with linear equalizers to form a variety of additional approaches. In [7] and 

[28], the idea of replacing the conventional first-stage of the Varanasi DFE with a 

decorrelating filter was considered, and significant performance gains were achieved. In 

[22] - [24], among other ideas, the idea of replacing the conventional first-stage of the 

Xie DFE with a decorrelator was considered along with some modifications to the way in 

which second-stage decisions were formed. These approaches carry with them the added 

complexity of the decorrelator, but they suggest an obvious extension to the hybrid DFE, 

namely, that a linear section could be added to the first-stage of the hybrid multistage 

DFE. This linear section would attempt to eliminate the future MUI from the first- 

stage's decision statistic either by an inverse filtering approach like that in the DFE in 

[22] and [23], or by adopting the minimum mean squared error criterion for the future 

MUI cancellation and using an LMS or RLS approach to adapt the feedforward matrix 

filter taps. Related ideas were examined in [24]. 
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In [22] -[24], the idea of ordering the users according to their energies rather than 

their delays was considered. This modification implies that the "future MUT would take 

on the meaning of weaker MUI and the "past MUI" would take on the meaning of 

stronger MUL It is possible that this modification, when applied to the hybrid would pro- 

vide better performance. This modification would also mean that the standard hybrid's 

first-stage would be roughly equivalent to the successive cancellation approaches in [34]. 

The term successive cancellation refers to approaches wherein the strongest user's signal 

is decoded first and then remodulated and subtracted from the next strongest user's signal 

and so on. Thus the hybrid with the users ordered according to energy is a multistage 

generalization of the successive cancellation schemes. 

Another variation of the basic Varanasi DFE is considered in [28]. In this paper, 

soft decision approaches are employed such as the use of a linear clipper in place of the 

threshold detector in each stage. These modifications are shown in [28] to provide gains 

in terms of the asymptotic multiuser efficiency for the two-user case. It is quite reason- 

able to expect that if these modifications are applied to the Xie DFE or the hybrid DFE, 

similar gains would be obtained. 

Thus in this chapter we have formulated a hybrid DFE which is capable of incor- 

porating the best features of virtually every other DFE that has been proposed. This 

hybrid DFE shows that the previously proposed approaches have features which are not 

mutually exclusive, but instead, their features may be combined into a common architec- 

ture which outperforms all of the others. 

In chapter 5, multiuser receivers which are appropriate for a convolutionally coded 

CDMA system are proposed which are based on the various DFE's of this chapter. In 

that chapter, we will see that the DFE category of multiuser receiver is again an attractive 

approach, in that it has a high performance level and a moderately low complexity. 

Before examining DFE's for coded links, however, we will first want to consider the 

optimum sequence estimator in the next chapter to provide a baseline for the best that the 
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suboptimum approaches of chapter 5 can hope to achieve. 
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Chapter 4 The Multiuser ML Sequence Estimator for Convolutionally 

Coded CDMA Links 

Now that, among other things, we have reviewed the various types of multiuser 

receivers that have been proposed for uncoded CDMA systems with additive white Gaus- 

sian noise, we are prepared to begin a study of the possible multiuser receiver approaches 

for coded links. We will begin this study by formulating the optimal sequence estimator 

in this chapter. An asymptotic analysis and computer simulations will be used to show 

that this receiver is able to significantly outperform the conventional receiver which was 

illustrated in Figure 2.6. Furthermore, we will see that the ML sequence estimator is able 

to achieve a single-user performance level in many situations. 

4.1 Optimum Sequence Estimator For Rate-1/2 Convolutional Codes 

The optimal MLSE will now be derived for the special case in which each user in 

the network is employing a rate-1/2 convolutional code with a constraint length W (or 

memory-order W-l), so Ts = 7j, = 271 Our limitation to this special case will facilitate 

considerably the derivation of the decoder, and it will then be outlined how the optimal 

decoder can be derived in a similar way for a general rate-P/ß convolutional code case. 

To begin, it is important to note that the optimal sequence estimator or equalizer for 

multiple-user uncoded signals operates in a "round-robin" fashion among all K users in 

the system, [1]. This Viterbi algorithm traverses one trellis stage per channel bit observed 

per user. The optimal sequence estimator for decoding the rate-1/2 code for one of the 

users in a single user environment, however, is a Viterbi algorithm which requires two 

channel observations from the user to move ahead one stage in the trellis. [62] The fact 

that the equalizer and decoder operate in a fundamentally different way suggests that a 

slightly different view of the problem is required. The following view of the problem 

will be adopted in order to bypass this issue. The rate-1/2 convolutional code can be 
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viewed not as a code which produces two binary bits per information bit period, Tb, but 

as an equivalent trellis code which produces one 4-ary coded waveform every Tb 

seconds. By formulating the equalization problem at the receiver with respect to this 

super-code-symbol view of the received signal, we can accomplish both the tasks of 

equalization and decoding in the same Viterbi algorithm. Because there is only one 4-ary 

super-symbol received for each information bit that must be decided, the decoder can be 

formulated in basically the same fashion as was used in [1] for the MUI problem or [61] 

for the ISI problem. 

We begin by defining the following notation. 

Ire [0,T) 
*iW~ o otherwise (41) 

f i t e [r, 2T) 
*2(')=< 0 otherwise (4"2) 

Next, the following function may be defined 

Dk(t-nTb^k) = Dk
l\n)gi(t-nTb-^k)+Dk

Z)(n)g2(t-nTb-<k) (4.3) 

where, as in Chapter 2, Dk
q)(n) is the ** user's code bit q in the time interval n. Two of 

the signature-carrier waveforms can likewise be concatenated to form a super-signature 

waveform. 

sk(t-nTb-xk) = sk{t-nTb-Zk) + sk(f-(n +V2)Tb-zk) (4.4) 

This again presumes that the signature sequence repeats every code symbol period. The 

received waveform may now be written in terms of these waveforms of duration Tb: 

r(0=  £   Ii^k(t-nTb-^tk)sk(t-nTb-^k)^Ek' + z(t) (4.5) 

where z(f) is the additive white Gaussian noise with a two-sided spectral density of 

NQ/2. This signal may be viewed as a four-valued super-code symbol, 

{Dk
l)(n\Dk

2\n)}t modulating a pair of orthonormal basis functions through the 
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procedure defined above. The basis functions in this new view of the waveform are 

H0) = ii(t)sk(t) (4.6) 

and 

♦»W»*a«3M0 (4-7> 

appropriately synchronized with the information bit periods. Thus, this equivalent view 

of the coding process suggests that the information bits are mapped by the encoder onto 

waveforms in a space defined by <hjt(f) and fait). Note that although the bases defined 

in (4.6) and (4.7) are orthonormal, they are not, in general, orthogonal to $y(t) and (fe/O 

which are the basis set for another user in the system, user ;, since sk(t) and sj{t) are not 

orthogonal in general. The result when the received signal is a sum of K component sig- 

nals is MUL We now define four parameters which are a measure of the degree of corre- 

lation between the basis functions of the different users. 

DO 

Vjtd) = J toj(f-*j) kkif-n-t-wt (4.9) 

•o 

Wjk(l) = J hjit-Xj) M-lTb-tfodt (4.10) 

XjkQ) = J $2j<$-*j)M-lTb-*k)dt (4.11) 

These parameters play the same role in the super-symbol view of the coded signal that 

Pjjfe(/) plays for the standard view of the signal. In fact, Ü, V, W and X can be related to p 

directly by substituting (4.4) into (4.6) and (4.7) and then into (4.8) through (4.11). 

ÜjkQ) = Pjk(2l+mk-mj) (4.12) 

Vjk(l) = pjk(2l+mk-mj) (4.13) 
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W>(Z) = pjk(2l+l+mk-mj) (4.14) 

Xjk(l) = pjk(2l-l+mk-mj) (4.15) 

(Recall that T* = mkT-nk, xk e [0,T), and mk e {0,...,ß-l}.) Note that Üjk(l) = Vjk(l) = 

Wjk(l)= Xjk(l) = 0 for 1/1 >1; this fact will play an important role in determining the 

proper state description of the system for the optimal sequence estimator. Some other 
mt ml ** mt 

useful properties of the correlation parameters are Ujk(l) = IfyH), Vjk(l) = VkjH) and 

*,*(/) = ^(-0. 

Beginning with equation (4.5), note that by performing a modulo-lf decomposition 

of the index i, namely i=a(i)£+ß(/)-l, we can write 

This assumes that the IST users transmit (2M+l)/K information bits each in the time inter- 

val of interest and that the signal is zero outside of this interval. We now further simplify 

the notation by defining the following terms, 

E®=Em (4.17) 

DP=D$t)(a(i)) (4.18) 

Uün = lf^n,Mm)-a(i)) (4.19) 

Vün = VWl)P(m)(a(m)-a(0) (4-20) 

Wim = WKOP(m)(a(m)-a(0) (4-21) 

X«,=XKi)P(M)(a(m)-a(/)) (4.22) 

We have now laid the foundation for the derivation of the MLSE. This development 

will closely follow the derivation of the optimal MLSE in [61] and [64] for the uncoded 

ISI channel. 

By expanding (4.16) with a Karhunen-Loeve expansion and letting the number of 

basis functions grow to infinity, we obtain the following waveform metric: 
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+DW$2Ki)(t^(i)Tb^)<EÜfdt (4.23) 

We next define 

if* = rfö (a(0) = J KOWf-^Or^V* <4-24> 

and 

oo 

r?) = rß (o(0) = J r(0 W'-a(07fc-^ß(o)* <4-25) 

which represent the outputs of a pair of matched filters or correlators for the basis func- 

tions for user ß(0 at time t = (oc(i)+l)7i, +xm. By expanding (4.23), and then collecting 

the appropriate terms we get the following metric. 

A(Ä) = A(Ä_1) + 2 [DpWi© (rP- XfD&Uu-t+DftWuJJEW) 

+ D?-><EÜ (r<2> -Z/i>ö *i-l + Dft V,i-iJW^)] (4.26) 

where D,- represents the multiuser code-symbol sequence up to time interval i, and L is 

the smallest integer such that for every L>L we have Üjk(a(L))= Vjk(a(L)) = 

WjkiaiL)) = Xyjt(a(L')) = 0. We have already seen that the correlation parameters are 

zero when I a(L) I > 1, so L = K-l. 

There are a number of important observations that can be made from the path metric 

given in equation (4.26). First of all, the ith stage metric depends only on the code sym- 

bols in the set 

S = {DP, D?\ D&JD&,..., DßU, D?)K+l}, (4.27) 

along with the matched filter outputs, r\l) and rp\ as well as the signal energies and 

correlations. It is possible to estimate the crosscorrelations using the local oscillators and 
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code generators which are assumed to be synchronized to the K components of the 

incoming signal. We can also estimate the energies, {£(,)} by averaging the squared out- 

puts of the matched filters for a number of bits. (The number over which they would be 

averaged would depend on the rate at which the relative strengths of the users is varying.) 

For any user, Jt, the convolutional encoder defines a mapping rule from the input 

information symbol and present state of the encoder to the code bits, D^pQi) and Z)£2)(n). 

If we define h (•) as the mapping rule from the input information symbol and state to the 

4-ary super-code symbol, {D$\n), Dk
2)(n)} then by substituting the information sym- 

bols that define the state of the encoder in for the state, the following expression may be 

written: 

{DJF>0i)f Dk
2\n)} =h(Ik(n), 7*(n-l),..., Ik(n-W+l)) (4.28) 

Thus, in this form, it is clear that the 4-ary super-code symbol depends on only W infor- 

mation symbols. Using this information, it is easy to redefine the set E which was defined 

in equation (4.27) in terms of the information symbols which affect the i   stage metric. 

E = {/,-,o,} (4.29) 

o, = {/,_!, 7,_2 Ii-WK+i) (4.30) 

where /,- = /ß(,)(a(i)). Thus it is now apparent that the system may be described in terms 

of 2WK~l states, since the information symbols are binary. Furthermore, the maximum 

likelihood sequence estimator can be implemented with a Viterbi algorithm operating on 

a trellis with 2WRr_1 states and two branches per state. This trellis will be cyclically 

time-varying as in the uncoded case, [1]. Furthermore, it is clear that this trellis reduces 

to the trellis derived in [1] when the constraint length of the code is one (uncoded 

transmission for each user). Obviously, the number of states in the MLSE grows very 

quickly with both the number of users in the system and the constraint length, W, of the 

codes being used. In fact, for a simple 4-user case where each user uses a W = 3, or 4- 

state code, the MLSE requires a Viterbi algorithm operating on a trellis with 2048 states! 
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The time complexity per bit decoded for the multiuser MLSE is TCB=0(2WK) 

since there are 2-2WK_1 metrics which must be computed at each stage of the trellis and 

one information bit is decided at each stage. Note that for the case of W = 1, the TCB 

calculated in [1] is again obtained. 

Now that the MLSE has been derived for the rate-1/2 case, it is straightforward to 

generalize to the case of rate-P/ß convolutional codes. The function Dk(t) will again 

have to be constructed from a set of orthogonal basis functions. One reasonable choice 

would be a set of Q non-overlapping pulses, each of duration T. Again, the function 5*(/) 

would be constructed from concatenations of Q versions of j*(f). The metric derivation 

could then proceed in the same fashion as in the rate-1/2 case. There are 2P input 

hypotheses to test in each Ts for each user, so the overall trellis will have 2P branches per 

state. Furthermore, the state of the system will be specified by (K+P)(K-1)+K informa- 

tion bits, so it will have 2*K+PK~P states, where K = log2S and S is the number of states in 

the single user's encoder. This will result in a TCB = 0(2
KK+PK

/P). Because the 

metrics grow with K as well, the number of arithmetic operations which must be per- 

formed for each decoded bit is 0(K2
KK+PK

/P). This complexity measure will be used 

throughout Chapter 5 to compare the complexity of the various receivers as well as the 

TCB. 

Clearly the exponential dependence of the TCB on the number of users, the number 

of states in each of the user's codes and P makes the use of the optimal decoder prohibi- 

tive for a realistic system. It is, however, an important receiver because it represents the 

best that can be achieved in terms of sequence error probability, and it will provide a 

good baseline by which to judge the quality of suboptimal schemes. This receiver also 

raises the possibility of using a variety of sparse searching algorithms like a sequential 

decoder as was used in [14] for the uncoded case, or reduced state sequence estimation 

techniques like the ones proposed in [8] and [56] for the uncoded MUI equalization prob- 

lem or [47] for the combined equalization and decoding problem for single-user links 
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suffering from ISI. 

4.2 Performance of the Optimal Sequence Estimator 

To illustrate the derivation of some performance bounds for the MLSE, we will 

again use the rate 1/2 code example. In this analysis we will fairly closely follow the 

analysis which appeared in [1] and [61]. In keeping with [1], we consider the decoding 

window to range from the index -M to the index M. The goal of this section is to esti- 

mate the performance of the optimal sequence estimator by bounding the finite and 

infinite horizon error probabilities for the kth user in the system, denoted Pt(n) and 

Pjt= lim Pf(n). 

Consider the transmission of the sequence of super-code symbols, D = 

{D?\ DP) fL-M, and a competing sequence in the trellis D+2e corresponding to the 

sequence {I>i1)+2e<1), Z><2)+2e<2)} Y=-M where e= {e^\ e\2)}?=-M is a sequence of 

code error symbols. Each e\q) can take on values in the set G = {0, ±1}. Next, define the 

following sets: 

B = { e: ei^eG, t^-M,...,Jlf, g=l,2, e<9>*0 for some i,q } (4.31) 

A (P) = { e: e e B, 5+27 € C } (4.32) 

C = {5:5eÄ({7})} (4.33) 

We see above that £ is the set of error sequences which have a nonzero element some- 

where in the sequence, A (D) is the set of error sequences in B which have the property 

that D+Teisa. valid code bit sequence, and C is the set of valid code sequences. Finally, 

h(-) is the mapping rule defined by the code from an information sequence, 7, to a 

sequence of super-code symbols, D, as in (4.28). Since this mapping rule is a one-to-one 

function, it has an inverse. If we define the information error sequence 

\jr = Ä_1(D+2?)-7 (4.34) 
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which is the information bit error sequence corresponding to Z> + 27 such that if 

D-h(7), thenD + 2e-h(I+Xf). This allows us to define 

AJf(D,n) = {7:7 e A (D), \|r*(n)*0} (4.35) 

so Aff(D,n) is the set of admissible error sequences which affect the nth information bit 

of the kth user. From these definitions, it follows that the probability of error for the nth 

bit of the kth user is given by 

DeC 
u     {A(D +27)>A(D) ID sent} 

\ZeAJf(D,n) 

)Af PM(Dsent)      (4.36) 

As is the usual approach, we choose to bound (4.36) with a union bound. 

PkWZJT,       X_  P(A0 + 2e)>A(D)\D sent)-PM(P sent)        (4.37) 
DeC eeAJf(D,n) 

The event A(Z> + 27) > A(D) may now be written by expanding equation (4.23) and sub- 

stituting 

ri1)=rg?)(a(0)= "ff1 (D^^E^f/ij + Dp^E^W^ + zP (4.38) 
j=i-K+l 

and 

r{2) = rg} (a(0) = "ff1 (DJl> VI^ + Df*&»Vy) + z<2) (4.39) 
y=i-J5T+l 

for rj1* and rP respectively, where zj1* and zP are the noise variates at the output of 

the matched filters for the basis functions <|>ipo) and <J>2ß(l) respectively for the interval a(i). 

After some algebra, the following expression for the event A(Z>+27) > A(D) is obtained. 

M       M 
X    2 iePeffU* + eP«g>Vta + e^W* + *PÄ) <E^E™ 

<   l-fi^^zP + ePzP) (4.40) 
i=-M 

Let A2 (7) represent the left side of equation (4.40). The right side of equation (4.40) is a 
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linear combination of Gaussian random variables, z\l) and z\2). It is not difficult to show 

that E [z\l)] = E [z\2)] - 0 and also that 

\Zm   Zm ) 2 
Uün    Wim 

**im     »im 
(4.41) 

As a result, if we define y to be the right side of equation (4.40), then it is not difficult to 

show that£[y]=0 and Var[y]= A2(e)-No/2. 

Next, the two-sequence error probability, or the probability of the event given in 

equation (4.40), becomes the probability that the Gaussian random variable, y. is larger 

than the threshold, A2(7). We next define the following efficiency parameter for the pair 

of sequences differing by the code symbol error sequence 7, as 

2Ek tbk 

(4.42) 

where 2?« = 2E* is the energy per information bit for user k. This allows us to write 

P (A(Z> + 27) > A(Z>) I D sent) = Q ^*nf(7) 
No 

(4.43) 

so r\jf(e) is the asymptotic efficiency relative to uncoded BPSK transmission for the Jfc* 

user for the pair of sequences D and D+27. This can be shown to reduce to the form of 

the distance measure in [1] for the uncoded system, because in [1], A2(7) may also be 

expressed as the L2 norm of the signal generated by modulating the error sequence. 

S(e,t)= X ci1)<|)1ß(0(r^(07'^ß(iO)^i^+«P)<|)2ß(/)(^^(0^^ß(0)^^ (4.44) 
i=-M 

has energy 

IS(7,0M2= JlS(7,f)l2<fr = A2(7) (4.45) 

This implies that an alternate way to express the efficiency parameter defined in (4.42) 
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for the pair of sequences D and D+e is 

(4.46) 

which is analogous to the form of the distance measure in [1] for the uncoded system. 

In order to construct a lower bound on the probability of error for user k, we define 

the following minimum efficiency as 

(4.47) il&H» = i«/      W-  ^(e) 
DeC eeA?(D,n) 

SO that 

tM M Pf{n) Z P [Tif (e)=iC-„(n)] • Q 
V N0 

(4.48) 

Thus we now have a lower bound expression for Pjf(n) given in (4.48). When (4.43) is 

substituted into equation (4.37) we have an upper bound on Pjf(n). 

To obtain bounds for the infinite horizon error probabilities Pk = lim Pjf(i), we 

may use the same argument used in [1], as it applies equally well to the coded case. 

Namely for any error sequence e such that ej=en*0 for j*n, the sequence 

?' = 
em+n-j     ™ >j 

(4.49) 

satisfies A2(e')<A2(e) or equivalently T\jf(£"')£T|£*(£"), else it would be possible to con- 

struct a sequence with a negative energy. Thus, we may conclude exactly as in [1] that 

the infinite horizon efficiencies TU(e) and r\k,min &G achieved by finite length error 

sequences. As a result, the infinite horizon error probability for the kth user may be 

lower bounded by 

P*>P[il*(i>TUiM,B]-ß T|jfc,mii mm (4.50) 
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Similarly, by passing (4.37) to the limit as M approaches infinity 
r 

V N0 
Pk^J,       E    PiPsent)Q 

DeC eeAk(D,n) 

1Ebkr\kCe) (4.51) 

where Ak(D,n) = lim Ak(D,n). We must note that (4.51) may not converge for all noise 

levels. In [1], the convergence region was increased by limiting the inner sum to the set 

of indecomposable sequences. This solution perhaps would be of use here as well to 

obtain a tighter upper bound, however, we will not focus on this issue here because the 

convergence of the upper bound will not affect the rest of our analysis. 

In the high signal-to-noise ratio regime, the terms in (4.51) with the minimum 

efficiency will dominate the asymptotic behavior of the receiver. As a result, we will 

refer to the minimum efficiency, t\k>mm as the asymptotic multiuser coding gain for user k 

(AMCG). The AMCG is an efficiency parameter which is a measure of the energy gain or 

loss of the system relative to an uncoded BPSK system operating alone with an energy 

per information bit of E^. Observe that t\k,mm depends on the crosscorrelations and rela- 

tive energies of the users as well as the properties of the code. 

In the limiting cases where there is only K = 1 user in the system, or when there are 

K users in the system with perfectly orthogonal super-signature sequences, then r\k,mn is 

the asymptotic coding gain (ACG) of a single-user system operating with the same code. 

In the special case where the users do not employ coding, r\k,min is equivalent to the 

asymptotic multiuser efficiency (AME) obtained in [1] for the optimal multiuser receiver 

for the uncoded system. Thus the asymptotic multiuser coding gain unifies the asymp- 

totic coding gain and the asymptotic multiuser efficiency parameters. 

T|jfc(7) may be rewritten as a quadratic form, 

r\k(e)=-^ev ET
T HTET « r- (4.52) 

To do this, we define the vector £> to be the subvector of the infinite length error 
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sequence e which consists of all of the nonzero components of 1 and all zero components 

of e which arc surrounded by nonzero components. If we assume that the dimension of 

the vector e j- is 2Tx 1, and 

then the matrix HT is defined as HT = [HjkijS'o where ^ sub matrices a16 given by 

#a = 
Ujt  Wjk (4.54) 

Thus, HY has dimensions 2T*JC IT. Also, £p k a diagonal energy matrix with diagonal 

elements EJJ = (Epy))%. 

As an example, consider the 2-user case with each user employing a rate 1/2,4-state 

convolution^ code, as is shown in Figure 4.2. If user 1 sends an all-zeros sequence, and 

user 2 sends all-zeros except for stage i o, where a 1 is sent, then a valid error sequence is 

e6 = (-1 -1110 -10 1 -1 -11 l)r. (4.55) 

For this case, assuming that mi =mz =0sothat?! =Xi andf2=<^. the 2^6 matrix takes 

the form 

#6 = 

1       0    P3i<9)    0       0 

0       1     Pad) pjt(P)    0 
Pa(0) pad) 

0    Pa<0) 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 

1 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 0 0      0      0 0 
1 Pad) 0      0      0 0 

Pad)    1 0 pa<0)    0 0 
0       0 1 PJ,(0 PJ,<0) 0 0 
0 
0 
0 
0 
0 
0 

0 
Pa(P) Pad) 

0 Pa(P) 
0 0 
0 0 
0 0 
0 0 

1 
0 
0 
0 
0 
0 

0 0 
1 Pad) 

Pad)    1 
0       0 

0 
0 
0 
0 
0 
0 
0 
1 

0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 

Paff»    0 
Pad) Paffi) 

0    Pa(P) pad)    1       0 
0       0    pa(P)    0       1 „ 
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Figure 4.1 Maximum Likelihood Sequence Estimator for a convolutionally encoded CDMA system. 
CE: Convolution^ encoder. 

skit-nTb-tk) 

Figure 4.2 Rate 1/2,4-state convolutional code. 
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and if the users have equal energy, then the effective efficiency for this error sequence is 

Tl1(?) = ^?5'H676=5-5p2i(0)-3p2i(l) (4.57) 

This implies that for this particular case, a necessary condition for the MLSE to have an 

asymptotic loss relative to a single-user system is 

Th(c) = 5-5p21(0)-3p2i(l) < df/2 (4.58) 

implying that, because the free distance of the code in use is df=5, if 

P2i(0) + |p2ia)>{ (4-59) 

then the MLSE decoder will not achieve a single-user performance level as ivV2--»0. 

In the same case, if the user's energies are not equal, 

E2 5     5E2 
Tli(?6)=2" + ^- 

l 

V/4 r 

^P2l(0) + {P21(1) (4.60) 

This may be considered an upper bound on T|iimjB since the minimum over all valid error 

sequences is no larger than the %(£) for a particular valid error sequence. 

In general an interesting result is obtained when we examine TU(7) for e sequences 

involving only single-user errors. Note that for every ee At(D,n) such that every 

nonzero element of e corresponds to user k, (in other words, only user k is involved in the 

error event) 

i\k(ß) = -^-elElHTETe-r = ~Ek'Wt[e] = —^— (4.61) 

where wt [ e ] is the weight or number of nonzero elements of e (or equivalenüy er), and 

wtk{e] is the weight of user it's subsequence of 7. (User fc's subsequence is the set of all 

{e?\ e\2)} in 7 such that ß(i) = Jfc.) Because 

min      wtk[e]     df 
eeAk(D,n) = -~ (4.62) 

DeC l Z 
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we have the result that iu(7) £ df/2 for every 7 e Ak(D,n) such that every nonzero ele- 

ment of 7 is contained in user k's subsequence. 

This result is important because it implies that single-user error events are not 

responsible if the AMCG is less than the ACG of a single user system. We thus must 

examine multiple-user error events to find r\k(e) < df/2, ( Recall that df/2 is the ACG 

for a rate 1/2 convolutional code). 

In general, the computation of J\kttnin involves a search over all eeAk(D,n) for each 

De C reference sequence. Rather than attacking this problem directly, we will lower 

bound the worst-case efficiency for the 2-user situation, and will then illustrate some nice 

properties of the MLSE using this bound. 

By studying the H? matrix for this 2-user case, we can obtain a lower bound on the 

result of equation (4.52) in the following way. Every nonzero element of 7p will multi- 

ply its corresponding element of 7f, the corresponding diagonal element of H? and be 

weighted by the energy for that element We thus have as a part of the result of (4.52) 

the weight of user l's error subsequence multiplied by E\ plus the weight of user 2's 

error subsequence multiplied by E2. The remaining terms in the result of (4.52) are due 

to the product of elements of 7p with other elements of ej-, weighted by the off-diagonal 

elements of Hj- and (E1£2)V*- E we lower bound the addition of these off diagonal 

terms by a number that is smaller man is achievable by the actual off-diagonal terms, 

then we have a lower bound on equation (4.52). One possible lower bound on the off 

diagonal terms leads to the following expression which is only a function of the weight of 

the error sequences. It turns out that this expression is, in most situations, a somewhat 

loose lower bound on T|jt(7). We will focus on the performance of user 1 without any loss 

in generality. 
rrE2 

Tl!(7)2:min{/ 
LL 

1 

Vi 

,wfi[7],wf2[7],C , df/2 } (4.63) 

where 
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/ 

V* 

,wti\e],wt2(e]£ 
■p 

= 1/2(wtl[e] + —-wt2[e]- 
&1 

Ei Vi 

(2 min{ wtx [e],wt2[e] }+2)0 (4.64) 

and where £ = I p2i (0) I + I p2\ (1) I. The function / (•) is a lower bound on T|i (?) as long 

as 7 has w^fe] > 0 and wt2[e] > 0. We have already seen from (4.61) and (4.62) that 

d/2 is a lower bound on T|i(7) when wt2{e] = 0, so the smaller of these two expressions 

is less than T|i(e) for all eeAk(D,n). 

For a fixed set of crosscorrelations and signal energies, thus a constant £ and con- 

stant ^E2/Ei, the function / (ylE2/Ei,wti(e), wt2[e],Q describes a family of parabo- 

las, one for each value of wt\ [7] and wt2(e]. It is easy to show that 

min 
wtl(e)e{d/,dfH,...}   f 

This result implies that 

'Hi.mm ^ E 

V4 

,wti[e],wt2[e]£ =f 
V4 

.d/.d/.C        (4.65) 

Tä2" 
EI 

V4 

M 
« 

c 
= min{/ 

V4 

.*/2} (4.66) 

which means that we have lower-bounded the AMCG by a function which depends only 

on the user's energies, crosscorrelations and the free distance of the code. This bound 

on T|i(fm-n is valid only for the 2-user, rate 1/2 code case, but it will illustrate some very 

important features of the performance of the MLSE which should remain true for the 

general K-user, rate P/Q code cases as well. This bound will illustrate these performance 

features without requiring a solution to the NP-hard problem of searching for the actual 

error sequence, 7, and corresponding reference sequence, D, which achieve the actual 

^ll.inin- 

The first feature of the bound in (4.66) may be noted by examining the plot of F(-) 

as a function {E2/Ei)A shown in Figure 4.3 for £ = 0.6 and df = 5. As the interfering 
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0.4- 
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F(V^7i7.0.6.5) 

(Lower Bound on AMCG) 

ill («6> (Upper Bound on AMCG) 

0L J L J 1 1 1 I I I ■       l       I 
0    0.2   0.4   0.6   0.8     1     1.2   1.4   1.6   1.8    2    2.2   2.4   2.6   2.8    3 

Figure 4.3 Plot of lower bound on Th>m6, for fee 2-user, p2i(0) = P2i(l)=0.3 case with each user 
employing the code shown in Figure 2. Also shown is the actual % (?) for the specific error event 
given in equation (4.SS). 
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signal strength, 2s 2 becomes small relative to E\t F(-) approaches the ACG of the single 

user system. Also, as E% becomes large relative to E\, F(-) again reaches the ACG of a 

single user. In fact, for 

E2 >2C 
dj+l 

(4.67) 

the MLSE necessarily will have the same asymptotic performance as that of a single-user 

system. In fact, because F(-) is only a lower bound on the AMCG of the receiver, the 

actual energy ratio above which single-user performance is achieved may be significantly 

lower than the threshold given in (4.67). This point may be illustrated by the dashed line 

in Figure 4.3 which is the upper bound given in equation (4.60). Without performing the 

search for T|lfmi„, we do not know whether the ThC?) shown for that particular e is the 

minimum, but if it is, then the actual threshold for {ßi/E{)A above which single-user 

asymptotic performance is achieved would be 0.96. 

Another interesting feature of the bound in equation (4.66) is that it provides a 

lower bound on the near-far resistance of the MLSE, which is defined as the infimum of 
TlJt,fflin over the energies of the interfering users. [4] This infimum for the function F(-) is 

Vi      1 

(E/£,)*€ [0,«) (EJEtfelO,") 
M df     X? 1 •i~if# (468) 

which is positive for 

C=lp2l(0)l+lp2l(l)l< 
dj+l 

(4.69) 

A strictly positive near-far resistance implies that the receiver will have a performance 

that goes to zero at the same exponential rate as a single-user system operating with an 

energy penalty of T\hmin. 

It is also interesting to note that as the code which is employed becomes more 

powerful, or as df increases, the conditions on the crosscorrelations of the users become 
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progressively less restrictive to achieve near-far resistance. In other words, a stronger 

code allows the MLSE to remain near-far resistant on a channel with more severe MUI 

than would be possible with a weaker code. Again, however, because F(-) is simply a 

lower bound on T|jtim,B, the actual AMCG may be positive when the minimum of F(-) is 

not. Nonetheless, the fact that (4.69) implies a positive lower bound is an interesting 

feature of the bound in (4.66). 

4.3 Simulation Results 

To provide some direct comparisons between the performance of the MLSE and the 

conventional receiver in terms of bit error rate at moderate to low E^NQ, we will use a 

computer simulation for some two-user cases. Figure 4.4 shows the results of a simula- 

tion of a two-user system where each user employs a 4-state rate 1/2 convolutional code. 

The resulting super-trellis used by the MLSE has 32 states. Figure 4.4 illustrates a fairly 

severe MUI environment where Pi2(0) = 0.3 and pi2(-l) = 0.3. In this case, the MLSE 

is able to recoup almost all of the loss that the conventional decoder suffers when com- 

pared with the performance in the single-user environment. In Figure 4.5, the same 0.3 

channel is simulated for a varying near-far energy ratio. This figure shows that the 

MLSE approach achieves a single-user performance level for sufficiently strong or 

sufficiently weak interference. This result is supported by the asymptotic performance 

suggested by the bound in Figure 4.3. In addition, equation (4.68) suggests that the 

MLSE is near-far resistant for this case, since £ = 0.6 and df = 5. Also, the upper bound 

on the AMCG in Figure 4.3 suggests that there is not necessarily an asymptotic loss for 

the MLSE relative to the single-user performance level in the equal-energy case since the 

AMCG is upper bounded by 2.5 at an energy ratio of one. This is supported by the simu- 

lation in Figure 4.4. 

Figures 4.6, 4.7 and 4.8 show the performance curves for a more severe two-user 

channel with Pi2(0) = 0.4 and Pi2(-1) = 0.4 and the same code. In all of these graphs, 
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Figure 4.4 Performance curves of the MLSE (dotted line) for a 2-user channel with puCO)=0.3 
and pi2(-l)=0.3 and equal energies. The solid lines show a single-user system (no MUT) with 
and without the rate-1/2 4-state convolutional code and also a multiuser system with a conven- 
tional receiver. 
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Figure 4.5 Near-far ratio performance curves of the MLSE on a 2-user channel with pi2(0) = 0.3 
and pi2(-l) = 0.3 at Ebi/N0 = 2dB. The single-user system performance level (no MUI) with 
the rate-1/2 4-state convolutional code is shown as a solid line and the MLSE performance is 
shown as a dotted line. 
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Figure 4.6 Plot of lower bound on i\hmin for the 2-user, p2, (0) = p2i(l) - 0.4 case with each user 
employing the code shown in Figure 2. Also shown is the actual Til (e) for the specific error event 
given in equation (4.55). 



70 

baverage 

0.1- 

./~"-~--^^^ ^^ conventional 

0.01- MLSE- 

\v..              BPSK^ 
0.001- 

.0001 1 
Single User Coded\ 
it          •• 

Eb/N0 (dB) 

Figure 4.7 Performance curve of the MLSE for a 2-user channel with pi2(0) = 0.4 and 
Pi2<-1) = 0.4 and equal energies. The solid lines show a single user system (no MUI) with and 
without the rate-1/2 4-state convolutional code. 
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Figure 4.8 Near-far ratio performance curve of the MLSE a 2-user channel with pi2(0) = 0.4 and 
Pn(-1) = 0-4 at £4 \/N0 =2 dB for the rate-1/2 4-state convolutional code case. 
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we see that the performance is worse than in the corresponding figures for the 0.3 chan- 

nel, but again the MLSE is near-far resistant. 

It is worth noting that all of the performance analysis in this chapter has been based 

upon the metric for the case where each user in the system employs rate-1/2 convolu- 

tional codes. The expression for the distance and asymptotic multiuser coding gain will 

be more complicated in the general rate-P/ß code case, but the derivation procedure will 

be the same. Thus the work in this chapter is meant to illustrate the general procedure for 

the error analysis of the more complex general code rate case. 

In conclusion, in this chapter the maximum likelihood sequence estimator was for- 

mulated for CDMA systems where each user employs a convolutional code to improve 

its performance. It was shown that the complexity of the MLSE has an exponent given 

by the product of W and K (in the rate 1/2 code case). This high complexity points to 

the use of suboptimal approaches to attempt to attain high performance levels with a 

more reasonable complexity. In the next chapter we will pursue this goal by introducing 

a number of suboptimum receiver architectures that are appropriate for coded CDMA 

links. 
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Chapter  5   Suboptimum  Multiuser  Receivers  for   Convolutionally 

Coded CDMA Links 

In the last chapter, the ML sequence estimator was introduced and we saw that its 

performance was significantly better than the conventional receiver's, however its com- 

plexity was prohibitively high. Motivated by the need for low complexity receivers with 

a performance level that is similar to the optimal sequence estimator's, we search in this 

chapter for low-complexity suboptimal receivers. Figure 5.1 outlines the various 

approaches that will be examined in this chapter. 

Through an asymptotic analysis and simulation, it will be shown that these mul- 

tiuser detection techniques are able to significantly improve the performance of the con- 

ventional basestation architecture. In the last chapter, an important performance meas- 

ure, named the asymptotic multiuser coding gain (AMCG), was introduced. This parame- 

ter may be defined, in general, as the required energy of a binary antipodal single-user 

receiver which achieves the same performance as the multiuser receiver (as the noise 

power approaches zero), divided by the required energy of a single -user binary antipo- 

dal receiver for an uncoded link. Recall that this parameter reduces to the familiar 

asymptotic multiuser efficiency (AME) parameter for the uncoded multiuser case, and to 

the asymptotic coding gain (ACG) in the single-user coded case. Several of the decision 

feedback approaches which will be studied in this chapter do not lend themselves to an 

analysis in terms of AMCG. As a result, these approaches will be compared with the 

important baseline architectures via a computer simulation. 

Rather than introducing the suboptimum receivers of Figure 5.1 in the order that 

they appear in the figure, it will be preferable to first discuss the partitioned approaches, 

and then to discuss the combined equalization and decoding approaches afterwards. This 

presentation will provide a unified view of the various approaches. 
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Demodulators for CDMA systems with convolutional codes 
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Only (no Equalization) 
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And Decoding 

Linear Equalization 

separate 
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and decoding 

combined 
equalization 
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Decorrelator [44] 
or others such as 

MMSE 

Correlator 
Bank 

Decision Feedback 
Equalization 

Trellis Based 

separate 
equalization 
and decoding 

combined 
equalization 
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Code Symbol Level 
DEE 

(many versions 
possible) 

separate 
equalization 
and decoding 

Integrated 
DFE 

Partitioned 
Trellis Based 

Receiver 

combined 
equalization 
and decoding 

MLSE 
(optimal sequence 

estimator) 

Figure 5.1: Tree diagram of die possible receiver structures for CDMA systems operating with convolutional codes. 

All of the partitioned approaches (separate equalization and decoding) can be implemented in a hard or 
soft decision form. 
(The approaches in boxes will be discussed in this chapter) 
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5.1 Hard-Decision Partitioned Approaches 

The broad class of multiuser receiver architectures which treat equalization of the 

MUI and decoding of the code separately as shown in Figure 5.2 will be referred to as 

partitioned multiuser receivers. Within this class of partitioned approaches are those 

which use a hard-decision multiuser receiver to supply hard decisions from the inner 

channel to a bank of outer Viterbi decoders, and those which use soft decision multiuser 

receivers to supply soft-decisions to the outer decoders. For the hard-decision case, 

sufficient interleaving can provide the outer decoders with statistics which can be accu- 

rately modeled as the outputs of a bank of K binary symmetric channels. This level of 

sufficient interleaving will typically be achieved with a block interleaver which has a 

width equal to the release depth of the outer Viterbi algorithms (roughly five times the 

constraint length, W), and a depth greater man the average length of an error event 

(which is only a few code symbols at high SNR). 

Before analyzing the performance of a hard-decision partitioned multiuser receiver, 

it will be useful to first consider the performance of a hard-decision receiver operating on 

a coded link with no interferers. Consider, without any loss in generality, the perfor- 

mance of user k operating in isolation. For this case, the crossover probability for the 

binary symmetric channel is 

Pk = Q VS-V5P (5.1) 

since Ek = RcEbk. The first-event error probability in the Viterbi decoder can be bounded 

by 

Pe* YiadP2{d) (5.2) 
d=d. 

where ad is the multiplicity of paths with a distance d from the desired path and Pi(d) is 

the probability of confusing two sequences which are d Hamming units apart. The bit 
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error probability can be bounded by a similar sum. If we define 

t = 
4-1 

(5.3) 

where the function \x\ gives the next integer smaller than or equal to x. As iV0/2-»0, 

the first-event error probability becomes dominated by the leading term in the series 

(5.2), namely 

Pe^adfP2i4f)=ad/P
,

k
+1     as No/2-*) (5.4) 

This term may be upper-bounded using (5.1) and the asymptotically tight upper bound 

Q(x)<lAexp(rx2/2). 

Ebk t+h a^Za^Viy^cxp 
No 

Rc(t+n (5.5) 

It follows from (5.4) and (5.5) that the ACG for this hard-decision receiver is 

dr-1 
ACG=Rc(t+l) = Rc + 1 (5.6) 

in terms of an absolute ratio, and in terms of decibels as ACG^B = 10 log(ACG). 

With this single-user case as a foundation, we may proceed to analyze the AMCG 

for a partitioned hard-decision multiuser receiver. Consider again the receiver illustrated 

by Figure 5.2. If the interleaving is perfect, in the sense that it has an adequate depth to 

provide a memoryless inner channel for the outer decoders, then the overall channel may 

be modeled as a bank of K binary symmetric channels. The crossover probability for the 

kth user's binary symmetric channel is then given by 

(5.7) 

where uten* is the AME of the kth user's multiuser receiver which operates on the 

sequence of code symbols as though they were uncoded symbols, and b^ is the effective 
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multiplicity of competing sequences of distance r\. Equation (5.2) again gives the first- 

event error probability and the first term of this series will again dominate for low noise 

situations. 

f+i 
mzi :—i VI^ inner) 

min as NQ/2-^0    (5.8) 

As in (5.5), this leading term may be upper bounded as follows 

Ebk 
%&f&y+1p&l*%M+lQtfsi>y+1e*p No 

Rrt&f? (*+l)      (5.9) 

Because this bound is asymptotically tight, we have 

AMCGk=r\ktmin = 
dr\ 

+ 1 Re ,mm (5.10) 

as long as the interleaving is perfect 

This is an important result, because it is a simple relation for the AMCG of the 

overall hard-decision partitioned multiuser receiver in terms of 1) the code rate, 2) the 

free distance of the code and 3) the AME of the multiuser receiver which is employed for 

making code bit decisions. The AME has been computed for many multiuser receivers 

on uncoded links, and so using those results from the literature, we may easily compute 

the AMCG for the perfectly interleaved hard-decision partitioned receiver of interest. 

We now state some of the AME expressions from the literature and use these results 

to compute the AMCG using (5.10). In [2] and [3], the AME for user one in a two-user 

system is given for the optimum sequence estimator as 

*\°min = 1~^J~E~ 0,2lp21(0)l -Vf + max 0.21 paid) '-Vf 5.11) 

In [4], the AME for user one in a two-user system is given for the decorrelator with an 

infinite horizon as 
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Tltirt. = Vd-(P21 (0)+P21 (D)2][1-(P21 (0)-p21 CD)2] (5.12) 

In [2] the AME of the conventional receiver was derived for the 2-user case, and the 

result was 

nimm H 0 (5.13) 

where as in Chapter 4, £ = • P21 (0)' + IP2i(l)l- Finally, in [29], an expression for the 

AME of the 2-stage Varanasi multistage DFE is given. This expression will not be 

repeated here for the sake of brevity, but instead the interested reader can refer to [29]. 

Using all of these expressions and (5.10), we may plot the AMCG for a hard- 

decision partitioned receiver in a 2-user system with a conventional inner receiver, a 

decorrelator, and a ML sequence estimator. Li Figures 5.3, 5.4, 5.5 and 5.6, the AMCG 

for user 1 is plotted versus ^E2/Ei for some specific codes and channel conditions. In 

Figure 5.3, the curves are plotted for the case where both users employ a rate 1/2 4-state 

code with df= 5, and P2i(0) = p2i(l) = 0.2. For this code, by equation (5.6) we know 

that the ACG for user one operating in isolation is ACG = 1.5, or 101og(1.5) dB. Figures 

5.4 and 5.5 show the AMCG versus near-far energy ratio again for the same code with 

df = 5, but this time with p2i (0) = p2i (1) = 0.3 in Figure 5.4 and p2i (0) = p21 (1) = 0.4 in 

Figure 5.5. These figures illustrate that as the channel cross-correlations become greater, 

the achievable multiuser coding gain for the partitioned receivers drops, although the 

benefits of coding remain the same. Figure 5.6 shows the same curves for the case where 

the codes employed are rate 1/2 64-state codes which have d/= 10, again with 

P2i(0) = P2i(l):=:0.3. From this figure and equation (5.10), it is clear that a stronger 

code is able to improve the achievable multiuser coding gain given the same channel 

conditions, (compare with Figure 5.4) 
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The complexity of the various receivers may be measured with the time complexity 

per decoded bit. The overall TCB will be the sum of the TCB of the outer Viterbi 

decoders and Q times the TCB of the inner multiuser receiver since Q code bits must be 

decided for every stage of the outer decoders. If we assume that the code is a rate P/Q 

code and has a binary memory order of K bits, then the outer Viterbi algorithms will have 

a TCB = O (2K+P/P). (Note that if code puncturing is used to obtain a rate P/Q code 

from a rate 1/ß code, then the complexity of the outer Viterbi algorithms will be TCB = 

0(2K+1) since there are 2K states and 2 branches per state.) Furthermore, the conven- 

tional inner receiver will have TCBa,^ = 0 (1), the MLSE inner receiver will have 

TCBMLSE = 0(2*) and the J-stage DFE inner receiver will have TCBDFE -0(J) assum- 

ing that the complexity of one MUI calculation is roughly equivalent to a metric calcula- 

tion (which it often is not). It may be more useful to compare the rough number of arith- 

metic operations (or multiplications) per decoded bit to make a comparison with the 

decorrelator. For the MLSE this is O (K 2K), and for the J-stage DFE this is O (JK). We 

know from Section 2.1.2 that the decorrelator requires roughly 0(BK) operations per 

decoded bit if 5 is the impulse response truncation depth of a decorrelator which is 

implemented with an FIR matrix filter. It follows that the overall number of arithmetic 

operations per decoded information bit for the hard decision partitioned receivers is on 

the order of OPcom-0(2K+p/P) for the conventional inner receiver, 

OPMLSE = 0([QK2
K

+2
K+P

]/P) for the MLSE inner receiver, 

OPJDFE-0([QKJ+2K+pyP) for the J-stage DFE inner receiver and 

OP dec. ~ O ([QK&¥2K+pyP) for the decorrelator inner receiver. 

Another consideration in the choice of receiver architecture might be the decoding 

delay for the receiver. The overall decoding delay for a partitioned receiver will be the 

sum of the decoding delay of the inner receiver with that of the deinterleaver with that of 

the outer Viterbi decoder. The decoding delay of the outer Viterbi decoders will typi- 

cally be a few times the constraint length, W, of the code in use. We may assume for 
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comparison's sake that this delay is AVA = 5WTS seconds. The decoding delay for the 

conventional inner receiver will be zero, except for maybe the delay associated with the 

quantization process, (which will be negligible). A J-stage DFE will have a decoding 

delay of AJDFE = (J~1)TS/Q. An MLSE which has a release depth of 5K stages will 

have a delay of roughly LMLSE - 5KT/K = 5TS/Q seconds. A decorrelator or MMSE 

linear inner receiver with an impulse response truncation depth of 5 taps will have a 

decoding delay of A^. = 8772 = Tsti/2Q seconds. This implies that if we neglect the 

deinterleaver's delay since it will presumably be the same for all receivers, we get the 

following overall delays for the hard-decision partitioned receivers: A/» [Conv
= 5WTS for 

the conventional inner receiver, Ap \MLSE ~ 5TS/Q + 5WTS for the MLSE inner receiver, 

A/» IJDFE = (J-l)Tg/Q + 5WTS for the J-stage DFE inner receiver and 

Ap \dec. ~ 8r/2ß + 5WTS for the decorrelating inner receiver. It is worth noting that all 

of these decoding delays are roughly the same. 

5.2 Soft-Decision Partitioned Approaches 

The computation of the AMCG for the soft-decision partitioned approaches is more 

difficult than for the hard-decision case. We will have to write expressions for the deci- 

sion statistics at the outer Viterbi decoders for the various inner multiuser receivers, and 

then upper bound the worst-case values of these decision statistics to obtain lower bound 

expressions for the AMCG of the overall receivers. It is interesting and important to note 

that the conventional receiver may be viewed as a member of the class of soft-decisioned 

partitioned receivers with a degenerate multiuser receiver which simply passes the 

matched filter outputs to the outer Viterbi algorithms without altering them. As a result, 

by analyzing the multiuser receivers in this class, we will also be analyzing the important 

conventional receiver's performance. 

Before analyzing the soft-decision partitioned multiuser receivers in detail, how- 

ever, it will again be useful to first consider the single-user case. To analyze the ACG for 
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a soft-decision receiver operating in isolation, we begin by bounding the first-event error 

probability: 

Pe^ ItadP2(d) 
d=df 

(5.14) 

where P2W) is me probability of confusing two sequences which are a distance d Ham- 

ming units apart. The bit error probability will be bounded by a sum which is similar to 

(5.14). On a standard additive white Gaussian noise channel, the two sequence error pro- 

bability is given by 

P2(d) = Q 
P%bk  

(5.15) 

Thus using the asymptotically tight bound Q (x) £ lA exp(-jc2/2), we have 

<*d 

d=dt * N0 
dR, (5.16) 

As iVo /2 -> 0, the first event error probability becomes dominated by the leading term in 

the series. Thus 

<*df 
Pe=-^exp 

N0 
d/Rc as No/2-»0 (5.17) 

and we may recognize the asymptotic coding gain from (5.17) as 

ACG=dfRc (5.18) 

which is usually expressed as ACG^ = 101og(ACG) dB. When this is compared to the 

hard-decision result in equation (5.10), we see that the soft-decision decoder has between 

2 and 3 dB better performance than the hard-decision decoder. This is a familiar result 

(See [64] or [67]) 

With the single-user ACG clearly defined, we may now move on to examine the 

AMCG for soft-decision partitioned multiuser receivers. Consider the system shown in 



86 

Figure 5.2 again. If the deinterleaved outputs of the multiuser receiver are now con- 

sidered to be soft outputs denoted by yi9\n) for the kth user's code bit q in the nth inter- 

val, then the first question to be asked is, "What is the structure of the optimal subsequent 

decoders?" If yj?\n) is conditionally Gaussian given the information bit sequence for 

user k, then the appropriate decoding strategy for sequences over a decoding window 

n = i o to I'O +r is to use a Viterbi algorithm with the following correlation metric 

A(y* \Dk) = X £#0i>D?>0i) (5.19) 
n=i0q=l 

where % is the deinterleaved sequence of soft decision outputs of user it's multiuser 

receiver, Dk is the sequence of transmitted code symbols for user k. Note that to main- 

tain consistency with the "horizon" used in Chapter 4, i o = a(-M) and T = a(M)-i Q. 

The notation used in equation (5.19) is going to become overly complex later and so 

we will simplify this equation by defining a modulo Q decomposition of an index, j, in 

the same way that we defined the modulo K decomposition in Chapter 4. In this way, we 

can write (5.19) with a single sum which accumulates all Q of the code bits for each 

interval, n, for user it. 

_      »'o+ßr 
A(y*u>*)= ZyjyAy (5.20) 

Ho 

In this equation, ykj = yf^ßC/)), Dkj = Z>ia(/))(ß(/)), and j = a(/)ß + ßO>L (Note that 

we assume that i'o = ß(i'o) without a loss in generality) 

The metric for any competing sequence in the trellis Dk + 27* will be 

_      _     »o-Hßr 
A(y* I Dk + 2ek) =   X ykj[DkJ + 2ekj] (5.21) 

where 7* is user k's subsequence of e from Chapter 4, and ekj = «jf^^ßO'))- It thus fol- 

lows that the two-sequence error probability will be given by 

_ _ «o + ßr 
P2(ek) = P[A(yk\Dk + 21k)>A(yk\Dk)} = P[  X y&n, > 0] (5.22) 

;-»'o 
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where Pi(ßk) denotes the two-sequence error probability for sequences differing by 7*, 

and it is assumed that the nonzero portion of the error sequence {ey} occurs in the region 

ioZj&io + QT. 

To proceed, we need to be able to characterize yy. To do this, let 

ykj=DkJ^ + NkJ (5.23) 

where Ny is the noise (or perturbation in general) for user fc's code bit a(j) in the ß(/)* 

interval after deinterleaving the soft-decision multiuser receiver outputs. The charac- 

teristics of the noise will depend on the inner multiuser receiver in use. 

5.2.1 The Conventional Receiver 

With this generic description of the inputs to the outer Viterbi decoders, we may 

now consider a number of special cases for specific soft-decision multiuser inner 

receivers. One of the most important special cases of the soft-decision partitioned 

receiver is the conventional receiver. This receiver essentially uses a degenerate mul- 

tiuser receiver which simply passes the matched filter outputs on to the outer Viterbi 

algorithms without altering them in any way, except possibly descrambling them in a 

deinterleaver. For the conventional receiver, each input to the outer Viterbi algorithms 

corresponds to a desired part, DjyV^T» and a noise part, corresponding to 

Nkj = RMUIkj + zkj = MUIkj + zkj (5.24) 

RMUIy denotes the residual MUI, which for the conventional receiver is equal to the 

MUI on the matched filter output, and zy denotes the Gaussian portion of the noise. It is 

worth noting that this overall noise is not Gaussian, and so the use of the correlation 

metric in the outer Viterbi decoders is not optimum. The noise is Gaussian conditioned 

on the signal plus interference, however the outer Viterbi algorithms do not condition on 

the interference due to the other users. An interesting research topic might be to derive 

the metric for the outer decoders which is optimal for the noise due to the sum of the 
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Gaussian noise and the interference. We will not proceed in this direction, but will sim- 

ply note the suboptimality of the adopted metric. It is worth noting that it is common to 

appeal to the Central Limit Theorem to claim that the noise is approximately Gaussian. 

This leads to the claim that the correlation metric is appropriate for the outer decoders. 

The Central Limit Theorem leads to misleading and overly optimistic conclusions in 

many cases, however. 

Because the noise statistic in (5.24) will be Gaussian conditioned on a given 

sequence of the desired user and the interferers, we could obtain a performance estimate 

by averaging with respect to all possible sequences. This performance will be asymptoti- 

cally determined by the worst-case interference case. As a result, we may bound the resi- 

dual MUI by its effective worst case value for completely unconstrained interferers to 

obtain a lower bound on the AMCG of the conventional receiver. The worst case value 

of RMUIkj when the constraints on the other user's transmitted code sequences are taken 

into account will be no greater than (and most often lower than) the value assuming 

unconstrained sequences. If interleaving is used on the link, then the interference patterns 

will be closer to unconstrained interference patterns since the interleaving will effectively 

break up the code's constraints. Another point worth noticing is that according to (5.24), 

the noise on the receiver outputs is the same as the noise on the matched filter outputs, 

albeit potentially scrambled from the deinterleaving process. The noise sequence 

{Zkj} J=\ is white, and the deinterleaving will not affect this. 

With this characterization of y*y, we may proceed to substitute (5.24) and (5.23) into 

(5.22). 

i0+QT io+er   
P2(ßk)=P[ E ekjzkJ>- £ ekJ(Dkj^+MUIkj)] (5.25) 

;'=«'o J='o 

Next define 

«o+er 
'=   2 ekjZkj (5.26) 

7='o 
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Note that whenever ekj*0, then ekj = -Dkj (since Dkj+2ekj must be a valid error 

sequence). Making these substitutions we get 

i0+QT 
P2(ek)=Pft>   2 (ekß

2tä-ekjMUIkj] 
y'='o 

(5.27) 

Next, replace ekfMUIkj by its largest possible value for completely unconstrained 

interferers, 

ekJMUIkj<{ekjf 2IPta,(l)lVS"+IIPta(R)lV5r+  X  iptaC-Di-AT 
m=l m** m=*+l 

(5.28) 

Thus 

«o+ßr 
P2(ek)£P®>   £ (ekJ)

2iEk (5.29) 
7=«0 

where 

Yfc = V^T- X1|pfe«(l)l^m"+Elp*m(0)l>&+    £    lpfa,(-l)lV5T 
M=l m#* m=*+l 

(5.30) 

We may next note that 

so (5.29) becomes 

io+ßr 

y'=*'o 

p2(i*)<;p[ß>H*[i*]Y*] 

(5.31) 

(5.32) 

Because ß is a linear combination of white Gaussian random variables of zero mean and 

variance N0 /2, it is not difficult to show that E [ß] = 0, and E [ß2] = wt &k]-N0 /2. It fol- 

lows that 

Pi(ek)<Q 4 2Ebk   tk 

No ' Ebk 

-wt{ek] for yk £ 0 (5.33) 

which implies that 
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v\k<ßk)'*-h-'vt&k\     fory*>0 
Zbk 

(5.34) 

Since yk, which was defined in (5.30), may be negative, we may generalize the bound in 

(5.34) to be 

r\ck(ek) S> max2{ 0, yk(wt&kVEbk)
1Ä (5.35) 

Finally, since E^ = Ek/Rc, we note that 

ni £ _ inf x\ck(ek) > max2 { 0, yk(dfRc/Ek)
l/>} 

ek valid 
(5.36) 

Stated in a different form we have the final bound 

\fei 
t-i 

/• > 

Hkfc ZmK*{0,(dfRc)»[l- 2 lPfc„(l)l 
m=l £* 

V4 

-E'Pib»(0)i 
£* 

V4 

"   £    lpJb»(-l)l 
m=*+l ** 

V ^ 

H 

1} 

For the 2-user, Rc = xh case, this bound takes the form 

r^-WiFi2  «VF<* 
T\ l.lBIB > i 0 otherwise (5.38) 

(recall that £= Ip2i(0)l+ Ip2i(l)l) This lower bound on the AMCG for the conven- 

tional receiver is potentially loose if the coding imposes severe restrictions on the allow- 

able interfering sequences. This is due to the fact that the worst-case allowable interfer- 

ing sequence may be much less severe than the unconstrained worst case sequence. 

Nonetheless, with good interleaving, we believe that it will be a reasonable approxima- 

tion. 

The bound in (5.38) is plotted in Figures 5.7,5.8 and 5.9 for the C = 0.4,0.6 and 0.8 

cases respectively. From these figures, we see that as the energy of the interferer grows, 

the AMCG of user l's conventional receiver drops to zero. This zero AMCG typically 

implies that the receiver will have a performance floor. 
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The TCB and decoding delay of the conventional receiver with soft-decisions will 

be the same as those of the partitioned hard-decision receiver with a conventional inner 

receiver. 

52.2 Soft-Decision Partitioned Receiver With A Linear Multiuser Receiver 

Another interesting class of partitioned receivers is those with a linear inner mul- 

tiuser receiver, [44]. The most well known members of the class of linear multiuser 

receivers are the decorrelator, [4] and the minimum mean squared error (MMSE) 

receivers [17], [21], [24] and [13]. In addition, there are a number of other linear 

receivers that have appeared in the literature, including the optimal near-far resistant 

linear receiver in [4]. 

In this section, we will focus on the decorrelator as a representative of this class 

because it leads to a tractable analysis. This multiuser receiver has the property that 

RMUIkj = 0 at the decorrelator output, but the variance of 2y will generally be larger 

than that of ztj due to this receiver's noise enhancement property. For this receiver, we 

may write the two-sequence error probability as 

io+ßr 
Pi(ek) = P[ Z ekj<DkJ^+~Zkj) > 0 ] (5.39) 

j=iQ 

io+QT io+ßr 
= P[ X e*A/>- 2 ekjDkjiÖ~] (5.40) 

Mo "     Ma 

If we next notice that Dkj = -ekj whenever ekj # 0, use (5.31), and redefine ß for this sec- 

tion in the same fashion as in (5.26) to now be 

«o+fir 
ß=  2 ekJzkj, (5.41) 

Mo 

then we rewrite (5.40) as 

P2(ek) = Pft>»>t[ek]JEk~]. (5.42) 
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AMCG 

Upper Bound for MLSE 
Lower Bound for MLSE 

.Upper Bound for Soft PjirtÖpned.Decprr-. 
Lower Bound for Soft Partitioned Decorr. 

,Paititioned.Hard-p.ecis^ 

Partitioned Hard-Decision Decorr. w/ Perfect interleaving 

Lower Bound on AMCG for Soft Conventional 

_l_ 
1.8 2.2     2.4    2.6    2.8 

^E^E, 

Figure 5.7 Plot of AMCG for the 2-user, p2i (0) = p2i (1) = 0.2 case where both users employ a rate 1/2 
4-state code with df = 5. The ACG for a single-user system using this code is 10 log (1.5) dB for a hard- 
decision decoder and 10 log (2.5) dB for a soft-decision decoder. Lower bounds are shown as solid lines, 
upper bounds as dashed lines, and the partitioned hard-decision approaches are shown as dotted lines for 
comparison (from Figure 5.3). 
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0.6 -    Partitioned   '"••..      \ 
0.5 - Hard-Decision     \.     \ Lower Bound on AMCG for Soft Conventional 
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0      0.2     0.4    0.6     0.8       1       1.2     1.4     1.6     1.8      2      2.2     2.4     2.6    2.8      3 

Figure 5.8 Plot of AMCG for the 2-user, p2] (0) = p2i(l) = 0.3 case where both users employ a rate 1/2 
4-state code with df = 5. The ACG for a single-user system using this code is 10 log (1.5) dB for a hard- 
decision decoder and 10 log (2.5) dB for a soft-decision decoder. Lower bounds are shown as solid lines, 
upper bounds as dashed lines, and the partitioned hard-decision approaches are shown as dotted lines for 
comparison (from Figure 5.4). 
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0 

Upper Bound for MLSE 
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1.6     1.8 2.2     2.4     2.6     2.8 

<EJE\ 
Figure 5.9 Plot of AMCG for the 2-user, p2( (0) = p2i(l) = 0.4 case where both users employ a rate 1/2 
4-state code with df = 5. The ACG for a single-user system using this code is 10 log (1.5) dB for a hard- 
decision decoder and 10 log (2.5) dB for a soft-decision decoder. Lower bounds are shown as solid lines, 
upper bounds as dashed lines, and the partitioned hard-decision approaches are shown as dotted lines for 
comparison (from Figure 5.5). 
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ß is a linear combination of zkfs which are each, in turn, a linear combination of the 

matched filter output noises, {zkj}- It is easy to show that 2s [ß] = 0. The computation of 

the second moment of ß requires more work, however. 

i'o+ßr       io+ßr 
E[$2]=E[ 2 ekjzkj X tkpZkp] 

_/=«•„ p=i0 

io+ßr i*o+ßr 
=  X     X ekjetpElzkjZkp] 

Next, define 

N0 
EiZkjZkp] = ~Y^kk(p-J) 

Using this nomenclature, we may proceed to rewrite (5.42) as 

P2<fik) = Q 

cwttßkY 

,ekp^kk(p-D 

so it is easy to see from (5.47) that 

TO*) = 
Rcwt{ekY 

IZetjCkpÜkkip-J) 
j P 

Rcwt[eky 
«o+er QT 

w*fö]***(0) + 2 £   Xekjekj-i<t>kkQ) 

(5.43) 

(5.44) 

(5.45) 

(5.46) 

(5.47) 

(5.48) 

(5.49) 

Now, all that remains to be done to obtain numerical results is to evaluate $**(/). We 

will do this for the 2-user case. If p(z) denotes the multiuser system channel transfer 

function matrix (see Section 2.1.2), and so p-1(z) denotes the decorrelator's transfer 

function matrix, then for the 2-user case we have, [4] 
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P~Hz)= l 

1-P12-P21-P12P21Z-P12P21Z" 

1 -(-P12+P21Z  *) 
-(P12+P21Z) 1 

(5.50) 

SO 

p3fc) = r 5 f        for *e {1,2} (5.51) 
I-P12-P21-P12P21Z-P12P21Z 

Taking the inverse Z-transform of this polynomial, we obtain 

Am   _ir-i,„    (l-p?2-p!i-V[HPi2+P2i)2][l-(Pi2-P2i)2])"' ,e_ 
*«(/) = ZT1 [piüfc (z)] = ============— (5.52) 

(2P12P21)"' V[l-(P12+P2l)2][l-(P12-P2l)2l 

where p12 = P21 (0), and p2i = p2i(l)- [4] 

We may write the denominator of (5.48) as a matrix quadratic form 

. Rc'wt [eit] 
irf(ft)=   '       _ (5.53) 

where && is a positive-definite Toeplitz matrix with elements 

l*kk]ij = *kk(H) (5.54) 

Next, if we note that the Rayleigh product may be upper bounded by the largest eigen- 

value of &j&, namely Am«, 

_T—         

&k &kk €k 
-r_     ^Vax (5.55) 

and we note that e* ek = wt [i*], then we obtain the following lower bound 

nd
k(ek)^   \ (5.56) 

"max 

A lower bound on the AMCG would then be the following 

d     .             .           Rc-wt{ek]     Rcdf 
nimin* mm        — = y-^ (5.57) 

wtfek]e[df,dj+l,...}     'Wax Amax 

Because Xm« depends on the dimensions of F* and <&**, we must note that this 



97 

eigenvalue increases as the dimension of i* and $& increases. It thus follows that the 

tightest bound will be obtained by using the eigenvalue corresponding to the smallest 

permissible dimension, which is 6 for the rate 1/2 4-state code we are considering as our 

example. This leads to X^« = 0.5228 for the case where P2i(l) = P2i(0) = 0.3. For this 

case, equation (5.57) yields the bound T|f ^ 1.6417. 

We may obtain a slightly tighter lower bound on the AMCG via the following pro- 

cedure. Note that $**(/) has the property that $«(0) > <&**(!) > $«(2) >... so the 

second term in the denominator of (5.49) may be upper bounded as follows 

»o+er QT Pw[«t]-i 
2 X   2*jyejy-/*tt(/)S2[   X   **<0<H*ßkH)] (5-58) 

j=i0 i=i i=i 

and this allows us to bound the expression in (5.49) by 

.                               Rcwt[ek]2 _ 
Ute)* £^ «*«c.**lä].Pia.P2i) (5-59) 

"*[?*]*te<W> + 2    X    *A(0<H*lftH> 
/=1 

This is a bound on T\i(*k) which is only a function of wt [£*] rather than the actual error 

sequence e*. Using the fact that this expression is monotonically increasing with wf [£*]> 

we can obtain a lower bound on the AMCG for this partitioned receiver. 

A - Rc4 
<„,,„ £ min        g (Rc,wt [i*],Pi2,p2i) = T^f (5.60) 

/=i 

As an example, for the case where P2i(l) = P2i(0) = 0.3 we get r\{ £ 1.67. This result is 

tighter than the bound which used the eigenvalue bound on the Rayleigh product and it is 

plotted in Figure 5.8. The results for p2i (0) = p2i (1) = 0.2 and 0.4 are plotted in Figures 

5.7 and 5.9 respectively. 

Another interesting result of (5.60) is that it provides a tightening of the lower 

bound on the AMCG of the MLSE of Chapter 4. This is due to the fact that the MLSE, 
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which is the optimal sequence estimator, will have a higher AMCG than the partitioned 

soft-decision decorrelator, which is a suboptimal sequence estimator. This tightening of 

the bound on the MLSE's AMCG is incorporated into Figures 5.7 - 5.9. 

An upper bound on the AMCG for the soft-decision partitioned decorrelator may be 

obtained by performing a non-exhaustive search over the set of possible valid ek 

sequences. One valid error vector for the standard four-state rate 1/2 code is the follow- 

ing, 7jfc = (110111). This error vector gives the smallest result of equation (5.53) of those 

tested. Because the actual minimum of equation (5.53) over the set of all valid error 

sequences must be no larger than the minimum of (5.53) over the small set of sequences 

that we tested, we have an upper bound on the AMCG. This upper bound turns out to be 

quite close to the lower bound we have already obtained, so we have a very accurate pic- 

ture of the partitioned decorrelator's performance. This upper bound is also plotted in 

Figures 5.7 - 5.9. 

The complexity of the soft-decision and hard-decision partitioned receivers with a 

decorrelating inner receiver will be the same, as will the decoding delay. This is a result 

of the fact that the only difference between the two is that the soft-decision version does 

not make a hard decision on the decision statistics before passing them to the outer 

Viterbi decoders, and the outer decoder metrics will differ but be of the same complexity 

order. 

5.2.3 Soft-Decision Partitioned Receiver with a Trellis-Based or Tree-Based Inner 

Receiver 

A third approach which potentially will have the highest performance of any parti- 

tioned approach is the one which uses a soft-decision trellis-based or tree-based receiver 

as the inner multiuser receiver. There are a number of possible trellis-based receivers, 

the most important of which are the ML sequence estimator, [1], and the reduced state 

sequence estimator (RSSE), [8], [56]. As an example of a tree-based receiver, see [14]. 
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In their standard form, each of these receivers output hard-decisions, and so the tech- 

niques of [51] and [52] must be applied to allow the inner receiver to supply soft outputs 

to the outer Viterbi decoders. 

This approach has recently been proposed by two research groups, [53], and [16]. 

Both groups cite the prohibitive complexity of the full ML sequence estimator, and 

examine RSSE and sequential decoding alternatives. 

The computation of the AMCG for these approaches remains an open problem. The 

AMCG of the soft-decision partitioned receiver with an ML sequence estimator should 

have a higher AMCG than any other partitioned receiver, since the ML sequence estima- 

tor is the optimum inner receiver in the sequence error probability sense. It follows that 

RSSE and sequential decoding approaches which do not suffer significantly in perfor- 

mance relative to the MLSE will also have a high AMCG. The interested reader is 

referred to [16] and [53] for more detail on these particular approaches. 

5.2.4 Soft-Decision Partitioned Receiver With a DFE Inner Receiver 

In this approach, a multistage DFE operates on the set of matched filter outputs, by 

making tentative decisions and feeding these decisions back to make estimates of the 

MUI which will be subtracted from other matched filter outputs. The key in the soft code 

symbol DFE (SCS-DFE) approach is that at the final stage, the MUI estimate will again 

be subtracted from the delayed matched filter output, but no hard-decision making will be 

performed. Instead, the modified matched filter output will be passed straight to the 

Viterbi decoder. 

At this point, we have not committed to a particular type of multistage DFE. As 

discussed in Chapter 3, there have been at least six architectures proposed in the litera- 

ture for asynchronous CDMA links, [6], [13], [22]-[24], [34], [20] and [45], and there has 

also been some work on improving the decision making procedure of the algorithms, 

[28]. The improved decision making procedures in [28] can easily be applied to any of 
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the basic architectures. 

The performance of this class of approaches is difficult to evaluate analytically, due 

to the presence of error propagation. Expressions for the AME of the Varanasi DEE have 

recently been reported in [29], but the approaches used to get those AME expressions do 

not easily generalize to the coded link case. It is possible to evaluate the AMCG under 

the assumption of correct feedback. However this implies that as long as the correlation 

parameters and energies have been perfectly estimated, RMUI = 0. Since there is no resi- 

dual interference if the feedback is correct, and there is no noise enhancement, as in the 

case of the decorrelator, we obtain the result that the AMCG is that of a single-user sys- 

tem. Clearly, the presence of error propagation degrades the AMCG by some amount, so 

the computation of the actual AMCG remains an open question. Consequently, simula- 

tion will be the performance evaluation technique for this class of receiver. 

Because the structure of the integrated DFE which will be discussed in Section 5.3 

is most like the Varanasi style uncoded link multistage decoder, it is interesting to com- 

pare the integrated DFE with the Varanasi style SCS-DFE. In addition, because it was 

shown in Chapter 3 that in most cases, the Hybrid DFE outperforms the other two archi- 

tectures on an uncoded link, it is an obvious candidate for use in an SCS-DFE structure. 

Thus, the structures that were simulated were the Hybrid and Varanasi versions of the 

SCS-DFE. The modifications to the decision making devices in each preliminary stage 

of the multistage decoders discussed in [28] were not considered here, although those 

modifications may provide improvements in some cases. 

Figure 5.10 shows the performance curves for the "0.2 channel" illustrated by Fig- 

ure 3.4a. As Figure 5.10 illustrates, the conventional decoder suffers about a 3 dB loss at 

Pb average = 2-10~3 relative to the performance of the same receiver operating in the 

absence of MUI. For this case, the Hybrid version of the SCS-DFE outperforms the 

Varanasi version of the SCS-DFE. This is similar to the results obtained on the uncoded 

link simulated in Chapter 3. 
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Figure 5.11 shows the performance for the more severe channel illustrated in Figure 

3.4b. In this figure, it is evident that all of the decoders perform significantly worse than 

in the "0.2 channel" due to the more severe MUI. In addition, the hybrid SCS-DFE again 

outperforms the Varanasi DFE. 

Once again, the complexity and decoding delay of the soft-decision partitioned DFE 

receiver will be of the same order as in the hard-decision case. 

5.3 Combined Equalization and Decoding Approaches 

In all of the partitioned approaches, regardless of the type, the multiuser receiver 

operates at the code symbol level as though there were no coding on the link, and then 

passes its decisions or improved statistics to an outer decoder. The deficiency with this 

approach is that separating the functions of cancelling the MUI and decoding the mes- 

sage does not take full advantage of the coding on the link. The approaches discussed in 

this section attempt to alleviate this shortcoming. 

5.3.1 Linear Combined Equalization and Decoding Approaches 

A linear approach could be defined as any approach which somehow forms decision 

statistics for the information symbols using a linear method, ie. by linearly combining 

matched filter outputs, or more generally by performing linear operations on the received 

waveform without the use of matched filters at all. For any linear receiver, after decision 

statistics have been formed, a decision must be made to determine the estimated bit This 

decision making procedure will typically be nonlinear. One example of decision making 

procedure would be the comparison of a decision statistic to a threshold and output of a 

corresponding bit. (i.e. the Signum function) Another example would be a decision maker 

which chooses the largest of a set of decision statistic and outputs the corresponding 

symbol or symbols. 
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Figure 5.10 Performance curves of the soft-decision partitioned decision feedback receivers for 
the 4-user 0.2 channel illustrated in Figure 3.4a. The solid lines show a single user system (no 
MUI) with and without the rate-1/2 4-state convolutional code. Also shown are the one, two and 
three stage soft code symbol DFEs for both the Varanasi (dashed) and Hybrid (dotted) architec- 
tures. Note that the Varanasi style one-stage soft code symbol DFE is equivalent to the conven- 
tional receiver. 
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Figure 5.11 Performance curves for the various soft-decision partitioned decision feedback 
receivers for the more severe 4-user 0.25 channel illustrated in Figure 3.4b. The solid lines show 
a single user system (no MUI) with and without the rate-1/2 4-state convolutional code. Also 
shown are the one, two and three stage soft code symbol DFEs of both the Varanasi (dashed) and 
Hybrid (dotted) architectures. 



104 

The optimal receiver in terms of sequence error probability may be implemented in 

its most general form as a bank of correlators each of which correlates the received 

sequence with a waveform corresponding to a different transmitted information bit 

sequence. The decision maker would then simply choose the sequence of information 

bits for each user which corresponded to the largest correlator output If the horizon of 

the transmission is 2M+1 as in Chapter 4, then there would need to be 22Af+1 correlators 

assuming that each user sends binary data. For even a fairly small horizon, the number 

of correlators would be prohibitively high. We saw in Chapter 4 that this same ML 

sequence estimator may be implemented using a trellis-based receiver whose complexity 

did not depend on the horizon size. 

The fact that the ML receiver can be implemented in a linear form, however, is 

significant because it raises the possibility of forming suboptimura receivers which are 

linear and have a lower complexity that the optimal linear receiver. The question 

remains open, however, as to whether the complexity could ever be lowered to an imple- 

mentable level. Clearly, it would be desirable to develop a linear receiver which linearly 

combined the matched filter outputs to form its decision statistics, rather than having to 

build a large number of correlators. The convolutional code used by each of the users is 

a linear code, and thus may in some cases be invertible using a stable (and maybe even 

causal) linear receiver. The determination of the exact structure of this combined equali- 

zation and decoding linear receiver with a reasonable complexity remains an open ques- 

tion at this point, however. 

5.3.2    Trellis-Based   and   Tree-Based   Combined   Equalization   and   Decoding 

Approaches 

The MLSE of Chapter 4 is a trellis-based approach which combines the functions of 

equalization and decoding into one operation. This approach is the optimal sequence 

estimator. In this section, we briefly discuss the notion of a suboptimum trellis-based or 
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tree-based receiver, which was alluded to in Chapter 4. 

The MLSE has a prohibitively high number of states, thus it is natural to look to 

simplify the decoding process by combining states in some fashion. This approach of 

combining states in some fashion is what is referred to as reduced state sequence estima- 

tion (RSSE). There are a number of publications on the application of RSSE to simplify 

the MLSE for the uncoded case, [8], [56], as well as at least one other on the application 

of RSSE to simplify the process of equalizing and decoding a coded signal on a single- 

user dispersive link, [47]. It is undoubtedly possible to apply these techniques to the 

problem at hand to obtain a performance versus complexity tradeoff. 

Just as in [14], it is also presumably possible to use sequential decoding approaches 

to lower the complexity of the MLSE for the coded link case. Sequential decoding 

would also provide the opportunity to tradeoff performance versus complexity. 

One problem with the trellis-based and tree-based approaches, however, is that they 

are apparently not as robust to mismatch (a misestimation of the correlation or energy 

parameters) as some of the simpler approaches like the partitioned decorrelator and DFE 

approaches. In [27], it was shown that the uncoded link MLSE was not as robust as a 

Varanasi DFE to mismatch, in the sense that for even small values of mismatch, the 

suboptimum DFE outperformed the MLSE. This high sensitivity of the optimal approach 

to mismatch is a very undesirable feature, and it may very well carry over to suboptimal 

approaches which are based on the MLSE like the RSSE and sequential approaches. 

Nonetheless, given no mismatch, the trellis-based and tree-based approaches have the 

potential to perform nearly as well as the MLSE, possibly with a significantly decreased 

complexity. 
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5.3.3 The Decision Feedback Combined Equalization and Decoding Approach: The 

Integrated DFE 

The idea in the approach we will refer to as the integrated DFE is that the MUI can 

be more reliably estimated by exploiting the coding. Thus, instead of using a hard- 

decision device in the first stage of a multistage DFE, like that of [6], we may decode the 

message using a soft-decision Viterbi algorithm which operates on the stream of matched 

filter outputs in the /* channel, and then re-encodes the decoded bits to form estimates of 

the code bits. These code bit estimates can then be used to estimate the MUI in other 

user's channels. Again, as in the uncoded case, the decision feedback may be performed 

for as many stages as is desired. (See Figure 5.12) The performance of this approach is 

difficult to evaluate analytically, again due to the presence of incorrect feedback. As a 

result, simulation will be the performance evaluation technique in this section. 

A characteristic of convolutional codes, or most codes for that matter, is that at very 

low signal to noise ratios, the coded link may perform worse than an uncoded link. 

When the signal to noise ratio is in this regime, it is possible that the Viterbi decoder 

whose outputs are re-encoded to form the ML estimate of the code bit sequence, may 

perform worse than a simple hard-decision device operating on the code bits without 

regard to the coding. As a result of this characteristic, it is important that the combina- 

tion of the thermal noise and MUI is not so strong that the re-encoded Viterbi output 

sequence is worse than the estimated code bits of a simple threshold detector for the 

integrated DFE to outperform an SCS-DFE. Basically, the structure which provides 

better estimates of the code bit sequence will have a better estimate of the MUI in the 

other channel's multistage decoders. In general, because coding generally allows better 

estimates of the transmitted sequence, it is reasonable to expect the integrated DFE to 

outperform an SCS-DFE of a similar architecture like a SCS-DFE with a Varanasi DFE. 

Figure 5.13 shows performance of the integrated DFE and the various SCS-DFE 

approaches on the "0.2 channel" illustrated by Figure 3.4a. In this environment, the 
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Figure 5.12 The structure of a 3-stage integrated DFE for the k'h user with Viterbi algorithms (denoted VA) 
at each stage. A is the maximum delay in code bit periods corresponding to S information bit periods 
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integrated DFE is able to nearly recoup all of this loss, while the various SCS-DFEs are 

able to only recoup some of the loss. It may thus be concluded that the thermal noise and 

MUI are weak enough to be operating in the regime where a receiver which exploits the 

coding performs better than one which does not. 

Figure 5.14 shows the performance on the more severe channel illustrated in Figure 

3.4b. The integrated DFE still uniformly outperforms the Varanasi version of the SCS- 

DFE. For these particular channel characteristics, however, the hybrid SCS-DFE is able 

to outperform the integrated DFE at larger values of EIJNQ. While this may seem 

surprising at first, it is simply due to the fact that even though the hybrid SCS-DFE per- 

forms separate equalization and decoding, it has a high quality first stage which is able to 

provide better code symbol estimates to the second stage MUI estimator than the conven- 

tional Viterbi algorithm operating in the first stage of the integrated DFE. This case illus- 

trates that when the MUI is strong enough, the integrated DFE will not always outper- 

form a well designed SCS-DFE, although it does in most cases. 

To compute the TCB for the integrated DFE, we again assume that the computation 

of the MUI in each stage of the DFE structures is roughly equivalent in complexity to the 

computation of one metric in the Viterbi decoder. Thus adopting this convention, we 

may conclude that for a link with rate 1/ß and constraint length W codes, the /-stage 

integrated DFE has a time complexity of roughly TCB = 0((/-l)ß+/2w). This is 

significantly higher than that of the SCS-DFE, although it is far less than that of the 

MLSE of Chapter 4. In the general rate P/Q code case, if again, K = log25 where S is the 

number of states in each user's encoder, the integrated DFE has TCB = 

0([(J-i)Q+J2K+pyP). Again, because each MUI computation grows in complexity 

with K, we may say that the number of operations per decoded bit is on the order of 

OPIDFE = 0([(/-l)Ö*+/2K+/,]/P). 

If it is assumed again that the Viterbi decoders used operate with a decoding delay 

which is typically on the order of 5W, then the overall decoding delay of the /-stage 
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Figure 5.13 Performance curves of the various decision feedback receivers for the 4-user 0.2 
channel illustrated in Figure 3.4a. The solid lines show a single user system (no MUI) with and 
without the rate-1/2 4-state convolutional code. Also shown are the one, two and three stage soft 
code symbol DFEs for both the Varanasi (dashed) and Hybrid (dotted) architectures, and a one, 
two and three stage integrated DFE (dashed lines). Note that the Varanasi style one-stage soft 
code symbol DFE and the one-stage integrated DFE are both equivalent to the conventional 
receiver. 
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Figure 5.14 Performance curves of the various decision feedback receivers for the more severe 4-user 
0.25 channel illustrated in Figure 3.4b. The solid lines show a single user system (no MUI) with and 
without the rate-1/2 4-state convolutional code. Also shown are the one, two and three stage soft code 
symbol DFEs of both the Varanasi (dashed) and Hybrid (dotted) architectures, and a one, two and three 
stage integrated DFE (dashed lines). Note that the Varanasi style one-stage soft code symbol DFE and 
the one-stage integrated DFE are both equivalent to the conventional receiver. 
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integrated DFE is roughly 5JW. 

We may thus conclude that the integrated DFE has a larger TCB, and a longer 

decoding delay than any of the SCS-DFE approaches, but its performance is better in 

most cases. As a result, the appropriate choice of receiver configuration will depend on 

the expected severity of the channel and the complexity and delay constraints on the 

receiver. As we have seen in Figure 5.14, however, even the integrated DFE does not 

perform well when the MUI becomes too strong. 

5.4 Comparison of the Suboptimum Approaches 

In this chapter, a large number of approaches have been discussed (see Figure 5.1). 

The approaches can be categorized as linear, DFE and trellis-based, as in Figure 5.1, or 

they may be categorized as partitioned and combined approaches as they were presented 

in this chapter. 

The determination of which approach is the best for a specific situation is not trivial, 

because there are a number of factors which must be considered. Throughout this 

chapter, the number of arithmetic operations per decoded bit was used as a measure of 

the complexity of the receivers. Figure 5.15 shows a table comparing the complexity for 

some of the approaches discussed for two specific cases, a 2-user 2-state code case and a 

100-user 64-state code case. It is clear that for a large number of users and large codes, 

the MLSE and Partitioned MLSE are too complex to be used. Most of the other 

approaches are, however, fairly reasonable. 

The decoding delay is another factor which will be of importance in some applica- 

tions, such as voice communications. Figure 5.16 shows a table comparing the decoding 

delay of some of the approaches discussed for the same two cases as were used in Figure 

5.15. The interesting feature of this table is that most of the approaches have about the 

same decoding delay, with the exception of the Integrated DFE approaches. Even the 

very complex MLSE has a decoding delay that is the same as the conventional receiver, 
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Approximate Number of Operations Per Decided Bit 

receiver 2-user, 2-state case 100-user, 64-state case 

MLSE 32 5E212 

Partitioned MLSE 20 1.27E32 

3-stg. integrated DFE 20 784 

2-stg. integrated DFE 12 456 

3-stg. SCS-DFE 16 728 

2-stg. SCS-DFE 12 528 

Partitioned Decor. 24 1128 

Conventional 4 128 

Figure 5.15 Complexity comparison for two specific rate 1/2 code cases. The partitioned 

decorrelator approach assumes an impulse response truncation depth of 8 = 5. 
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Decoding Delay 

receiver 2-user, 2-state case 100-user, 64-state case 

MLSE lOTs 35Ts 

Partitioned MLSE 12.5Ts 37.5Ts 

3-stg. integrated DFE 30Ts 105Ts 

2-stg. integrated DFE 20Ts 70Ts 

3-stg. SCS-DFE HTs 36Ts 

2-stg. SCS-DFE 10.5Ts 35.5Ts 

Partitioned. Decor. 11.25Ts 36.25Ts 

Conventional lOTs 35Ts 

Figure 5.16 Decoding delay comparison for the same cases as in Figure 5.15. 
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assuming that all of the decoding operations can be completed in real time, (which they 

typically can not) 

In all cases, the performance is a very important factor in the determination of 

which approach is the best Throughout this chapter, the various approaches were com- 

pared using the AMCG performance measure whenever possible. When the receivers did 

not lend themselves to an AMCG analysis, as in the case of the DFE's, computer simula- 

tions were used to compare their performance to the important baselines, the single-user 

bound, the MLSE's performance and the conventional receiver's performance. In some 

cases, no performance analysis was given at all, but the receivers were discussed briefly 

anyway, for the sake of completeness. For these receivers, the interested reader was 

either referred to references which discussed their performance, as in the case of the 

soft-decision partitioned trellis-based/tree-based approaches, or a performance analysis 

has simply not been done yet. For most of the receivers in this chapter, however, the tools 

have been developed for comparing the various options. 

An examination of the figures of this chapter illustrates that the MLSE of Chapter 4 

has the highest performance. The worst performance of any receiver considered was the 

hard-decision conventional followed by the soft-decision conventional. The soft- 

decision partitioned approaches with a decorrelator or DFE inner receiver provide rea- 

sonable performance and have a fairly low complexity. If a higher complexity and decod- 

ing delay is tolerable, the integrated DFE will usually provide the best compromise of 

performance and complexity. 

Thus the basestation architecture which is most appropriate will depend on a 

number of different factors and there is no single correct solution for every situation. 

This dissertation has presented the pros and cons of each approach, however, so that the 

options may be compared in light of the constraints of a given application. 
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Chapter 6 Conclusions 

In this final chapter, the important results of this dissertation will be summarized. 

The merits and drawbacks of the proposed basestation architectures will be discussed. 

Finally this chapter will conclude with some thoughts on questions that remain open and 

may warrant additional research in the future. 

6.1 Summary of Results 

In this thesis, we considered direct sequence asynchronous CDMA systems with 

and without coding on a nondispersive AWGN channel. The notion of multiuser detec- 

tion, wherein a receiver jointly demodulates all of the users in a CDMA system, was first 

reviewed and then extended to CDMA systems with coding. In Chapter 2, after defining 

the concept of multiuser detection, a survey of the literature on the topic was presented. 

The review of the optimal receiver for the uncoded case led to the study of a wide variety 

of suboptimum approaches for the uncoded case which have already been proposed. 

These approaches may be broadly categorized as trellis/tree based approaches, linear 

approaches and decision feedback approaches. 

The review of the decision feedback approaches was deferred to Chapter 3, because 

the discussion of the nonlinear DFE approaches in [6] and [13] led to a new hybrid DFE 

approach. This hybrid DFE was shown through simulations to greatly outperform the 

approaches in [6] and [13] in most cases. It was next seen that the approaches discussed 

in [7], [22] - [24] and [28] could be incorporated into the hybrid design to provide a DFE 

which used the best features of each approach. Even the approach discussed in [34] could 

be viewed as special case of the hybrid architecture. Thus the major contribution of 

Chapter 3 is the unification of the different decision feedback approaches into a common 

architecture, and the illustration that the ideas used in each of the previous DFE's are not 

mutually exclusive. 
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We next proceeded to begin a study of receiver architectures for CDMA links with 

convolution^ coding. It was natural to begin the study with the optimal receiver 

(optimal in the sequence error probability sense). For the sake of simplicity, this max- 

imum likelihood sequence estimator was derived for the case where each user employed 

the same rate 1/2 code. This derivation generalizes easily to the case where the users 

employ rate P/Q codes and also the case where each user employs a different code. 

After the metric was derived for the rate 1/2 case, it was shown that the decoder may be 

implemented using a Viterbi algorithm which operates on a time-varying trellis with 

2WK~1 states (recall that W is the constraint length of the codes and K is the number of 

users in the system). The time complexity per decoded bit and rough number of arith- 

metic operations per decoded bit were then determined for this receiver and were seen to 

be exponential in both K and W. In the general rate P/Q code case, the complexity was 

exponential in P, K, and K, which is the binary memory order of the code. 

A performance analysis was then undertaken for the MLSE and an upper and lower 

bound on the asymptotic efficiency of this receiver relative to an uncoded coherent BPSK 

receiver was determined. This asymptotic efficiency was given the name asymptotic mul- 

tiuser coding gain (AMCG). It was seen that the AMCG unifys the asymptotic coding 

gain parameter and the asymptotic multiuser efficiency parameter which are traditional 

figure of merit parameters for single-user coded systems and multiuser uncoded systems 

respectively. The bounding procedure on the AMCG was used to avoid having to solve 

the NP-hard problem of searching for the valid error sequence which minimizes the 

efficiency equation (4.42) over the infinite set of all valid error sequences. Finally, some 

simulations were presented to illustrate the performance of the MLSE at moderate and 

low bit error rates. 

The very high complexity of the MLSE illustrated the need for suboptimum bases- 

tation architectures which perform nearly as well as the MLSE with a lower complexity. 

Chapter 5 examined a large number of possible receiver architectures which attempt to 
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satisfy this need. 

The first architectures examined were the partitioned receivers, which treat the 

equalization of the MUI and the decoding of the code separately. These approaches may 

be subdivided into hard and soft decision partitioned receivers. In the hard-decision par- 

titioned approach, an inner multiuser receiver operates on the received code symbol 

sequence without regard to the coding and then supplies hard-decisions to a bank of outer 

Viterbi decoders. In the soft-decision approach, the inner multiuser receivers are 

modified to supply soft-decisions to the outer Viterbi decoders. These approaches were 

analyzed in terms of AMCG, TCB, arithmetic operations per decoded bit and decoding 

delay for various inner receivers. Because the soft-decision partitioned receiver with a 

DFE as the inner receiver did not lend itself to an AMCG analysis, a computer simulation 

was used to compare it to the important baseline approaches. 

The next family of suboptimum approaches which were examined were those which 

combine the operations of equalization and decoding into a single operation. The 

integrated DFE was introduced as a DFE which estimates the MUI by exploiting the cod- 

ing on the link. This approach was shown to perform better than the partitioned DFE 

approaches in most cases. If the interference and noise were so severe so as to cause the 

Viterbi decoder to provide a worse sequence estimate than a simple symbol-by-symbol 

detector which does not consider the coding, then the integrated DFE does not perform as 

well as a well designed partitioned DFE. Again because of the presence of error propa- 

gation, the integrated DFE's performance was estimated using a computer simulation. 

Also, short discussions were given for suboptimum combined equalization and decoding 

approaches which were linear and trellis/tree based. Chapter 5 concluded with a brief 

comparison of the complexities and decoding delays of the various receivers. 

There is no single clear winning approach, as each provides advantages and disad- 

vantages in different situations. If an unlimited amount of processing power is available, 

the optimal solution is the clear winner. Furthermore, for a network with only a few users 
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and small codes, the complexity of the optimal receiver may be tolerable, however this 

situation will probably be very uncommon in practice. If the processing power of the 

receiver is very limited, it may only be possible to use a conventional receiver. The con- 

ventional receiver will typically provide the lowest performance of any approach studied, 

however. For situations where there is enough processing power to implement an inter- 

mediate approach, we have examined a range of options in Chapter 5. The partitioned 

approaches with soft-decision inner receivers will provide a relatively low complexity 

and high performance in many situations. If the processing power is high enough, a com- 

bined equalization and decoding approach will generally outperform a partitioned 

approach. In many situations, the integrated DEE seemed to provide the best perfor- 

mance of the approaches considered, however its time complexity per decoded bit and 

decoding delay are higher than many of the other approaches. The integrated DFE's 

complexity as measured in terms of the number of arithmetic operations per decoded bit 

is comparable to many of the partitioned approaches, however. The partitioned SCS- 

DFE approaches, particularly with a hybrid DFE inner multiuser receiver, are also prob- 

ably a good compromise in many situations. 

This dissertation has provided an introduction to a large number of approaches and 

their performance and complexity. 

6.2 Future Research Possibilities 

There are many possibilities for future research in this area. This work was con- 

cerned with CDMA links wherein convolutional coding is employed. Convolutional 

codes are a logical choice of codes for this situation, but there may be links where trellis 

coded modulation (TCM) or block coding is used instead. The extension to the TCM 

case will not be particularly difficult. Formulating the optimal receiver for the block cod- 

ing case may be more difficult, although many of the suboptimal approaches will easily 

generalize to this case. 
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Some work has been done recently to develop expressions for the asymptotic mul- 

tiuser efficiency (AME) of the Varanasi DFE, [29]. This work does not extend easily to 

the analysis of the AME of the hybrid DFE, however the development of AME expres- 

sions for the hybrid DFE would be a big contribution. Furthermore, it would also be 

worthwhile to develop expressions for the AMCG of the DFE approaches discussed in 

Chapter 5. This would allow a direct comparison with the other approaches via the 

AMCG performance measure. 

Another interesting extension of this work is to consider dispersive channels. There 

has been a significant amount of work recently on the design of multiuser receivers for 

dispersive uncoded CDMA systems, [9], [31] - [33]. Because many cellular channels are 

somewhat dispersive, it would be worthwhile to unify the work in [9], [31] - [33] with 

that in this dissertation. 

Finally, by no means has this dissertation proposed every possible multiuser 

receiver for coded links. There are most likely other solutions which have not yet been 

developed which may produce robust, low-complexity, high performance basestations. 

This dissertation has addressed many multiuser receiver architectures, but there may be 

some sophisticated new solutions waiting to be discovered still. 

In conclusion, it is hoped that this dissertation has opened the door to the field of 

multiuser detection for coded CDMA systems. We have seen that there exists great 

potential for multiuser receivers to significantly improve upon the performance of the 

conventional basestation architecture. In the future, this work will undoubtably lead to a 

significant improvement of the capacity of CDMA networks and should help illustrate 

that CDMA is a very attractive and worthwhile technique for allowing many users to 

share the crowded spectrum. 
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Abstract 

Motivated by the high complexity of the optimal sequence estimator for convolu- 
tionally coded asynchronous CDMA systems, which is developed in [25], and the poten- 
tially poor performance of the conventional receiver due to multiuser interference and the 
near-far problem, in this paper we examine relatively simple multiuser receivers which 
perform nearly as well as the optimal receiver. The multiuser receivers discussed in this 
paper are of two types. The first set of approaches are partitioned approaches that treat 
the multiuser interference equalization problem and the decoding problem separately. 
The second set of approaches are integrated approaches that perform both the equaliza- 
tion and decoding operations together. We study linear, decision feedback and 
trellis/tree-based approaches in each category. The asymptotic efficiency of this receiver 
relative to an uncoded coherent BPSK receiver (termed asymptotic multiuser coding 
gain, or AMCG) is used as a performance criterion throughout Also, computer simula- 
tions are used whenever the computation of the AMCG is not feasible. It is shown that a 
number of the approaches which are introduced in this paper achieve a high performance 
level with a moderate complexity. 



1. Introduction 

There has been a large amount of interest recently in the design of multiuser receivers 

for CDMA systems. These receivers jointly estimate the transmitted symbols of all of the 

users in the system, as opposed to estimating them independently. This approach is most 

appropriate for a base station in a multipoint-to-point network where the receiver must 

acquire and demodulate all of the signals in the network. Almost all of the multiuser detec- 

tion work has centered on uncoded links, see for example [1] - [8], [10] - [21]. Only recently 

has the problem of multiuser detection of coded links been considered, [22] - [26] and [30]. 

In [26], a sliding window version of the decorrelator, which was introduced in [4], was intro- 

duced and the authors alluded to the use of coding on the link as well. In [30], a partitioned 

soft-decision trellis-based approach was considered wherein the equalization and decoding 

operations are performed separately. 

In [25], the ML sequence estimator was introduced. Its performance was significantly 

better than the conventional receiver's, however its complexity was prohibitively high. 

Motivated by the need for low complexity receivers with a performance level that is com- 

mensurate with the optimal sequence estimator's, we search in this paper for low-complexity 

suboptimal receivers. Figure 1 outlines the various approaches that will be examined in this 

paper. 

Through an asymptotic analysis and simulation, it will be shown that these multiuser 

detection techniques are able to significantly improve the performance of the conventional 

basestation architecture. In [25], an important performance measure, named the asymptotic 

multiuser coding gain (AMCG), was introduced. This parameter may be defined, in general, 

as the required energy of a binary antipodal single-user receiver which achieves the same 

performance as the multiuser receiver (as the noise power approaches zero), divided by the 

required energy of a single -user binary antipodal receiver for an uncoded link. This param- 

eter reduces to the familiar asymptotic multiuser efficiency (AME) parameter for the 

uncoded multiuser case, [2], and to the asymptotic coding gain (ACG) in the single-user 

coded case. Several of the decision feedback approaches which will be studied in this paper 

do not lend themselves to an analysis in terms of AMCG. As a result, these approaches will 
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be compared with the important baseline architectures via a computer simulation. 

Rather than introducing the suboptimum receivers of Figure 1 in the order that they 

appear in the figure, it will be preferable to first discuss the partitioned approaches, and then 

to discuss the combined equalization and decoding approaches afterwards. This presentation 

will provide a unified view of the various approaches. 

2. Notation 

It will be assumed that the CDMA system has K users operating simultaneously on a 

common frequency in an asynchronous fashion. In general, it will be assumed that each user 

employs binary convolutional coding on its link. One further assumption in this paper is that 

each user employs the same convolutional code, although it is not at all difficult to generalize 

this work to the case where each user employs a different code. 

At each time interval of length Ts, the convolutional code is generated for user k by 

passing P binary information bits, Ik(n) = (l£\n),..., Ik
p\n)), through a shift register consist- 

ing of W stages with Q modulo-2 adders. The number of output bits for each P-bit input 

sequence is Q bits. The rate of the code is Rc = P/Q and the constraint length of the code is 

W. The output sequence of binary code bits for the interval corresponding to input bits Ik(n) 

is (Dk
l^(n),...,Dk

Q\n)). Note that for W-l and P = Q = 1, we have the uncoded case, so in 

that case Dk(n) = hin). 

In the time interval [nTs+{q-\)T-^ik,nTs+qT^ik), user it transmits data bit Dk
q\n), 

where xk represents the time shift of the kth user relative to some reference time, thus 

accounting for the asynchronism of the users relative to each other. T represents the code bit 

period and Tb = T/Rc is the information bit duration, thus Ts = QT = PTb. Let xk = mkT+xk, 

xk e [0,7), and mk e {0,...,ß-l}. Thus m*ris a coarse time shift and xk is a fine time shift 

for user k. 

Each user in the system is assigned a particular signature sequence, and it will be 

assumed that this signature sequence has a duration equal to the code bit interval, although 

this assumption can be relaxed with a change of the notation. We will combine the carrier 

and signature sequence into a single signal, thus the kth carrier multiplied by the binary (± 1) 

signature sequence, PNk(t), will be denoted by 

V2/T PNk(t) cos (0)c0     o £ t<, T 
sk(t)=< 0 oiherwize ^ ' 
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The energy of the k* user's code bit measured at the receiver will be denoted by Ek. It will 

be assumed that all K users transmit their signals through a common additive white Gaussian 

noise channel with two-sided noise spectral density NQ/2, and so the received signal will 

have the following form 

'(')= £   £ ^Xn)^ sk(t-nTs-(q-\)T-Zk) + z(.t) (2) 
n^—k=lq=l 

where z (f) denotes the noise. 

Next we define the partial cross-correlation of the known signature sequences j and k to 

be 

mm 

P;*(/)= jsj(t^Zj)sk(t-lT-<k)dt . (3) 

It is worth noting that pjj(ß) = 1 and pjk(l) = pkj(-l). 

As in the uncoded case, there are a number of ways in which a multiuser receiver can 

operate to improve upon the performance of the conventional basestation which makes deci- 

sions on each user's data using only the sequence of matched filter outputs for that user. In 

the next two sections, we will begin by studying hard-decision and soft-decision partitioned 

multiuser receivers which treat the equalization and decoding problems separately. 

3. Hard-Decision Partitioned Approaches 

The broad class of multiuser receiver architectures which treat equalization of the MUI 

and decoding of the code separately as shown in Figure 2 will be referred to as partitioned 

multiuser receivers. Within this class of partitioned approaches are those which use a hard- 

decision multiuser receiver to supply hard decisions from the inner channel to a bank of 

outer Viterbi decoders, and those which use soft decision multiuser receivers to supply soft- 

decisions to the outer decoders. For the hard-decision case, sufficient interleaving can pro- 

vide the outer decoders with statistics which can be accurately modeled as the outputs of a 

bank of K binary symmetric channels. This level of sufficient interleaving will typically be 

achieved with a block interleaver which has a width equal to the release depth of the outer 

Viterbi algorithms (roughly five times the constraint length, W), and a depth greater than the 

average length of an error event (which is only a few code symbols at high SNR). 
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Jh The crossover probability for the km user's binary symmetric channel may be written as 

(4) 

where r|j^r) is the AME (introduced in [2]) of the kth user's multiuser receiver which 

operates on the sequence of code symbols as though they were uncoded symbols, and b^ is 

the effective multiplicity of competing sequences of distance TJ. The first-event error proba- 

bility is given by 

Pe< X adP2(d) (5) 
d=d, 

where ad is the multiplicity of paths with a distance d from the desired path and Pi(d) is the 

probability of confusing two sequences which are d Hamming units apart The first term of 

this series will dominate for low noise situations: 

t+i 

Pe=adfP2(df)~ad/- *ngS»ß -^^S? OSNQ/2-^0 (6) 

where 

t = 
dr\ 

(7) 

The leading term in (6) may be upper bounded using the asymptotically tight bound 

Q (x) £ Vt exp (-x2/2) as follows 

% (Ner)'+I/>i+1 * «rf, (frier»'2? exP 

Because this bound is asymptotically tight, we have 

dr\ 

#0 
Rcr\tt!fnr) 0+1) (8) 

AMCGk = r\ktmin = + 1 .D .n(irmer) (9) 

as long as the interleaving is perfect. 

This is an important result, because it is a simple relation for the AMCG of the overall 

hard-decision partitioned multiuser receiver in terms of 1) the code rate, 2) the free distance 

of the code and 3) the AME of the multiuser receiver which is employed for making code bit 

decisions. It is not difficult to show that the asymptotic coding gain for a hard-decision 
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receiver operating in isolation is 

ACG=Rc(t+l) = Rc 
dt-1 

+ 1 (10) 

thus the AMCG is actually the product of the AME of the inner receiver and the ACG of a 

hard-decision receiver operating in isolation using the same code. The AME has been com- 

puted for many multiuser receivers on uncoded links, and so using those results from the 

literature, we may easily compute the AMCG for the perfectly interleaved hard-decision par- 

titioned receiver of interest. 

Using the expressions for the AME of the inner multiuser receivers from [2], [3], [4], 

and [17], we may plot the AMCG for a hard-decision partitioned receiver in a 2-user system 

with a conventional inner receiver, a decorrelator, and a ML sequence estimator, versus 

y\E2/Ei for specific codes and channel conditions. In Figure 3, the AMCG is plotted 

versus ■*JE2/El for user one and the case where both users employ a rate 1/2 4-state code 

with df-S, and p2i(0)=p2i(l) = 0.2. For this code, by equation (10) we know that the 

ACG for user one operating in isolation is ACG = 1.5, or 10 log(1.5) dB. Figure 4 shows the 

AMCG versus near-far energy ratio again for the same code with flf/= 5, but this time with 

P2i(0) = P2i(l) = 0.3. These figures illustrate that as the channel cross-correlations become 

higher, the achievable multiuser coding gain for the partitioned receivers drops. Figure 5 

shows the same curves for the case where the codes employed are rate 1/2 64-state codes 

which have a df = 10 and again p2i (0) = p21 (1) = 0.3. From this figure and equation (9), it is 

clear that a stronger code is able to improve the achievable multiuser coding gain given the 

same channel conditions, (compare with Figure 4) 

The complexity of the various receivers may be measured with the time complexity per 

decoded bit The overall TCB will be the sum of the TCB of the outer Viterbi decoders and 

Q times the TCB of the inner multiuser receiver since ß code bits must be decided for every 

stage of the outer decoders. If we assume that the code is a rate P/Q code and has a binary 

memory order of K bits, then the outer Viterbi algorithms will have a TCB = 0(2K+P/P). 

(Note that if code puncturing is used to obtain a rate P/Q code from a rate 1/ß code, then the 

complexity of the outer Viterbi algorithms will be TCB = 0(2K+1) since there are 2K states 

and 2 branches per state.) Furthermore, the conventional inner receiver will have 

TCBconv. =0(1), the MLSE inner receiver will have TCBMLSE = 0(2*) and the J-stage DFE 

inner receiver will have roughly TCBDpE = O (/) assuming that the complexity of one MUI 
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calculation is roughly equivalent to a metric calculation (which it often is not). It may be 

more useful to compare the rough number of arithmetic operations (or multiplications) per 

decoded bit to make a more fair comparison. For the MLSE this is roughly O (K 2K), and for 

the J-stage DFE this is approximately 0(JK). The decorrelator requires roughly 0(bK) 

operations per decoded bit if 8 is the impulse response length truncation depth of a decorrela- 

tor which is implemented with an FIR matrix filter. It follows that the overall number of 

arithmetic operations per decoded information bit for the hard decision partitioned receivers 

is on the order of OPconv^O(2K+p/P) for the conventional inner receiver, 

OP MUSE = 0([QK2K+2K+P]/P) for the MLSE inner receiver, OPJDFE = 0([QKJ+2K+P]/P) 

for the J-stage DFE inner receiver and OP^. = O ([QK&+2K+P]/P) for the decorrelator inner 

receiver. 

4. Soft-Decision Partitioned Approaches 

The computation of the AMCG for the soft-decision partitioned approaches is more 

difficult than for the hard-decision case. We will have to write expressions for the decision 

statistics at the outer Viterbi decoders for the various inner multiuser receivers, and then 

upper bound the worst-case values of these decision statistics to obtain lower bound expres- 

sions for the AMCG of the overall receivers. It is interesting and important to note that the 

conventional receiver may be viewed as a member of the class of soft-decisioned partitioned 

receivers with a degenerate multiuser receiver which simply passes the matched filter outputs 

to the outer Viterbi algorithms without altering them. As a result, by analyzing the multiuser 

receivers in this class, we will also be analyzing the important conventional receiver's per- 

formance. 

Consider the system shown in Figure 2 again. If the deinterleaved outputs of the mul- 

tiuser receiver are now considered to be soft outputs denoted by y$\n) for the kth user's 

code bit q in the nth interval, then the first question to be asked is, "What is the structure of 

the optimal subsequent decoders?" If yfcHn) is conditionally Gaussian, then the appropriate 

decoding strategy for sequences over a decoding window n = J'Q to i'o+r is to use a Viterbi 

algorithm with the following correlation metric 

A(y* ID*) = X Xyiq)(n)Mq)(n) (11) 
n=40q=l 

where y* is the deinterleaved sequence of soft decision outputs of user k's multiuser receiver, 
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and Dk is the sequence of transmitted code symbols for user k. Note that if we wish to main- 

tain consistency with the "horizon" used in [25], i0 = a(-Af) and T = a(3/)-i 0. 

The notation used in equation (11) is going to become overly complex later and so we 

will simplify this equation by defining a modulo Q decomposition of an index, j, in the same 

way that the modulo K decomposition was defined in [1] and [25]. In this way, we can write 

(11) with a single sum which accumulates all Q of the code bits for each interval, n, for user 

k. 

_     »o+fir 
AfolZ>*)=   EyjyAy (12) 

Ha 

In this equation, ykj =y£3t(/))(ß(/)), Dkj=Z>la°*))(ßO')), and ; = a(j)Q+ß(/H. (Note that we 

assume that i'o = ßO'o) without a loss in generality) 

The metric for any valid competing sequence in the trellis Dk + 2?* will be 

_ 'o+ßr 
Afo \Dk + 27*) =  X ykjWkj + 2ekj] (13) 

where ek is user Üs error sequence, and ekj = ejf^CßO"))- It thus follows that the two- 

sequence error probability for sequences differing by ek will be given by 

_ _ «'o+ßr 
P2gk) = P[A(yk\Dk + 27k)> A(yk\Dk)] = P[   X  >W > 0] (14) 

Ho 

where it is assumed that the nonzero portion of the error sequence {ekj} occurs in the region 

To proceed, we need to be able to characterize y*/. To do this, let 

ykJ=DkJJEk-+Nkj (15) 

where Nkj is the noise for user it's code bit a(j) in the ß(/)* interval after deinterleaving the 

soft-decision multiuser receiver outputs. The characteristics of the noise will depend on the 

inner multiuser receiver in use. 

4.1 The Conventional Receiver 

With this generic description of the inputs to the outer Viterbi decoders, we may now 

consider a number of special cases for specific soft-decision multiuser inner receivers. One 

of the most important special cases of the soft-decision partitioned receiver is the 
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conventional receiver. This receiver essentially uses a degenerate multiuser receiver which 

simply passes the matched filter outputs on to the outer Viterbi algorithms without altering 

them in any way, except possibly unscrambling them in a deinterleaver. For the conven- 

tional receiver, each input to the outer Viterbi algorithms corresponds to a desired part, 

DjyV^t", and a noise part, corresponding to 

Nkj = RMUhj + ztj = MUhj + zkJ (16) 

RMUIkj denotes the residual MUI, which for the conventional receiver is equal to the MUI 

on the matched filter output, and zy denotes the Gaussian portion of the noise. It is worth 

noting that this overall noise is not Gaussian, and so the use of the correlation metric in the 

outer Viterbi decoders is not optimum. The noise is Gaussian, conditioned on the signal plus 

interference; however the outer Viterbi algorithms do not condition on the interference due 

to the other users. It is worth noting that it is common to appeal to the Central Limit 

Theorem to claim that the noise in equation (16) is approximately Gaussian. This leads to 

the claim that the correlation metric is appropriate for the outer decoders. The Central Limit 

Theorem leads to misleading and overly optimistic conclusions in many cases, however. 

Because the noise statistic in (16) will be Gaussian conditioned on a given sequence of 

the desired user and the interferers, we could obtain a performance estimate by averaging 

with respect to all possible sequences. This performance will be asymptotically determined 

by the worst-case interference case. As a result, we may bound the residual MUI by its 

effective worst case value for completely unconstrained interferers to obtain a lower bound 

on the AMCG of the conventional receiver. The worst case value of RMUIkj when the con- 

straints on the other user's transmitted code sequences are taken into account will be no 

greater than (and most often lower than) the value assuming unconstrained sequences. If 

interleaving is used on the link, then the interference patterns will be closer to unconstrained 

interference patterns since the interleaving will effectively break up the code's constraints. 

Another point worth noticing is that according to (16), the noise on the receiver outputs is the 

same as the noise on the matched filter outputs, albeit potentially scrambled from the deinter- 

leaving process. The noise sequence {z*,} J=i is white, and the deinterleaving will not affect 

this. 

With this characterization of yjy, we may proceed to substitute (15) and (16) into (14). 

io+ßr io+ßr   
Pi(ek) = P{ E ekjZkj>- £ etjiDy^+MUIy)] (17) 

j=io J='o 
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9- 

«VK2r 
ß=   X ekjZkj (18) 

Note that whenever ekj # 0, then ekj = -Dkj (since Dkj + 2ekj must be a valid error sequence). 

Making these substitutions we get 

«o+ßr   
Pi(ek) = Ptt>   2 (ekj)2^-ekjMUIkJ] 

y=«*o 
(19) 

Next, replace ekj MUIkj by its largest possible value for completely unconstrained interfere«, 

*-i —        K 
ekJMUIkjZ(ekj) 

Thus 

Elp*md)l>&+Zlpjfem(0)lV^r+    2    IPfa,(-l)l>Er 

io+ßr 
P2(ek)ZP®>   2 ('*,)2Y*] 

;'=«'o 

(20) 

(21) 

where 

yk = ^- 

We may next note that 

z ipto»(i)iv^r+2ipjb«(0)iv^r+ z ip*m(-i)iV5T 
."•=1 m*k m=k+l 

(22) 

v"fo] = 2 (**y)2 (23) 

so (21) becomes 

PSUB2( ek) <S P[ß > wt (ek]yk) (24) 

Because ß is a linear combination of independent Gaussian random variables of zero mean 

and variance N0/2, it is not difficult to show that E[ß] = 0, and £[ß2] = wt{ek]-N0/2. It 

follows that 

Pi(fik)^Q 
j2Ebk   tk 

y No 'Ett 
-wt(ek] fory*£0 (25) 

which implies that 

r\i(fik)^~wt\ek]    fory^O (26) 
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Since y*, which was defined in (22), may be negative, we may generalize the bound in (26) 

tobe 

i\i(ek)^mzx2{0,yk(wt{ekVEbk)
lAl } 

Finally, since E^ = Ek /Rc, we note that 

(27) 

r\ck,min *  W itf(ejt)£max2{ 0, yk(dfRc/Ek)
iA] 

ek valid 
(28) 

Stated in a different form we have the final bound 

Jk-l 

nU, * ma*2< 0-^A)14 [1-2' Pfc»(D' 
m=l 

^ ^ 

-2'Pfo»(0)i 
V4 /• -\ 

- Z iPfc»(-D" 
m=*+l 

fc 

1} 

For the 2-user, Rc = xh case, this bound takes the form 

otherwise (30) 

(recall that £ = lp2i(0)l + Ip2i(l)0 This lower bound on the AMCG for the conventional 

receiver is potentially loose if the coding imposes severe restrictions on the allowable 

interfering sequences. This is due to the fact that the worst-case allowable interfering 

sequence may be much less severe than the unconstrained worst case sequence. Nonetheless, 

with good interleaving, we believe that it will be a reasonable approximation. 

The bound in (30) is plotted in Figures 6 and 7 for the £ = 0.4 and 0.6 cases respec- 

tively. From these figures, we see that as the energy of the interferer grows, the AMCG of 

user l's conventional receiver drops to zero. This zero AMCG typically implies that the 

receiver will have a performance floor. 

The TCB of the conventional receiver with soft-decisions will be the same as those of 

the partitioned hard-decision receiver with a conventional inner receiver. 

4.2 Soft-Decision Partitioned Receiver With A Linear Multiuser Receiver 

Another interesting class of partitioned receivers is those with a linear inner multiuser 

receiver, [26]. The most well known members of the class of linear multiuser receivers are 

the decorrelator, [4] and the minimum mean squared error (MMSE) receivers [7] and [14]. 
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In this section, we will focus on the decorrelator from [4] as a representative of this class 

because it leads to a tractable analysis. This multiuser receiver has the property that 

RMUIkj = 0 at the decorrelator output, but the variance of z\j will generally be larger than 

that of Zkj due to this receiver's noise enhancement property (see equation (16)). For this 

receiver, we may write the two-sequence error probability as 

«o+ßr   
Pi(ek) = P[ I ekj(Dkjfä+zkj)>0] 

7'=»o 

«o+er i0+Qr 
= PiX ekjzkj>- X eyDyfä] 

J=*o j=i0 

(31) 

(32) 

If we next notice that Dkj = -ekJ whenever ekJ # 0, use (23), and redefine ß for this section in 

the same fashion as in (18) to now be 

then we rewrite (32) as 

«o+ßr 
P=   Z ekjz\j, 

y"='o 

P2(ek) = P[$>wt[ek]JEk~] 

(33) 

(34) 

ß is a linear combination of Zk/s which are each, in turn, a linear combination of the matched 

filter output noises, {**,}. It is easy to show that £[ß] = 0. The computation of the second 

moment of ß requires more work, however. 

Next, define 

.       »o+er      io+gr 
Eft2]=E[ 2 eyzkj X ekp~z*p] 

J='o P=i0 

/o+er io+cr 
=   X     £ ekjekpEizkjZkp] 

j=i0   p=i0 

No 

(35) 

(36) 

(37) 

Using this nomenclature, we may proceed to rewrite (34) as 

Pi(fik) = Q 
'^•"flär 

£[ß2] 
(38) 
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= ß V 2fyk        Rcwt{ek]2 

No   1iLekjekp^>kk(p-J) 
j p 

(39) 

so it is easy to see from (39) that 

Tl?(i*) = 
*cH*fo]2 

j p 

Rcwt&k]
2 

«o+ßr QT 
vt*fo]<I>*fc(0) + 2 2   Xekjekj-i*kk(l) 

j=i0 i=i 

(40) 

(41) 

Now, all that remains to be done to obtain numerical results is to evaluate <&#(/). We will 

do this for the 2-user case. If p(z) denotes the multiuser system channel transfer function 

matrix, and so p-1(z) denotes the decorrelator's transfer function matrix, then for the 2-user 

case we have, [4] 

P_1(z) = 
1 

1-P12-P21-P12P21Z-P12P21Z 
-1 

1 -(-P12+P21Z"1) 
-(P12+P21Z) ! 

(42) 

so 

Pkk(z) = 
1 

,-1 
1-P12-P21-P12P21Z-P12P21Z" 

Taking the inverse Z-transform of this polynomial, we obtain 

for*e{l,2} (43) 

^>Ät(Z) = Zr-1[ptt1(z)] = 
(1-P?2-Pii-V[l-(P12+P21)2][HP12-P2i)2])l/' (44) 

(2P12P21)" ' V[HP12+P2l)2][l-(P12-P2l)2] 

where pn = P2i(0), and p2i = P21OX [4]. 

We may obtain lower bound on the AMCG via the following procedure. Note that 

<%(/) has the property that <&#(()) > $«(1) > ^tt(2) >•» so the second term in the denomi- 

nator of (41) may be upper bounded as follows 

«o+ßror wfföH _ 

j=i0  1=1 1=1 

(45) 

and this allows us to bound the expression in (41) by 
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VkGk)* ^jrj^ =g(Ro»>tGk],pl2,p2l)      (46) 

"*foN>**(0) + 2   £   *»(ZXwt[?*W) 

This is a bound on T^G»*) which is only a function of wt{ek] rather than the actual error 

sequence ek. Using the fact that this expression is monotonically increasing with wt[ek], we 

can obtain a lower bound on the AMCG for this partitioned receiver: 

R d2 

Vtmb,*        min       g(Rc,yvt{ek],pn,p2i)= j-f      (47) 
-«!.(**«.-> d^OHi^uxdri) 

As an example, for the case where p21(l) = p2i(0) = 0.3 we get r\f £ 1.67 (see Figure 7). 

The result for p21 (0) = p21 (1) = 0.2 is plotted in Figure 6. 

Another interesting result of (47) is that it provides a tightening of the lower bound on 

the AMCG of the MLSE of [25]. This is due to the fact that the MLSE, which is the optimal 

sequence estimator, will have a higher AMCG than the partitioned soft-decision decorrelator, 

which is a suboptimal sequence estimator. This tightening of the bound on the MLSE's 

AMCG is incorporated into Figures 6 and 7. 

An upper bound on the AMCG for the soft-decision partitioned decorrelator may be 

obtained by performing a non-exhaustive search over the set of possible valid ek sequences. 

One valid error vector for the standard four-state rate 1/2 code is the following, lk = 

(110111). This error vector gives the smallest result of equation (41) of those tested. 

Because the actual minimum of equation (41) over the set of all valid error sequences must 

be no larger than the minimum of (41) over the small set of sequences that we tested, we 

have an upper bound on the AMCG. This upper bound turns out to be quite close to the 

lower bound we have already obtained, so we have a very accurate picture of the partitioned 

decorrelator's performance. This upper bound is also plotted in Figures 6 and 7. 

The complexity of the soft-decision and hard-decision partitioned receivers with a 

decorrelating inner receiver will be the same. This is a result of the fact that the only differ- 

ence between the two is that the soft-decision version does not make a hard decision on the 

decision statistics before passing them to the outer Viterbi decoders, and the outer decoder 

metrics will differ but be of the same complexity order. 
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4.3 Soft-Decision Partitioned Receiver with a Trellis-Based or Tree-Based Inner 

Receiver 

A third approach which potentially will have the best performance of any partitioned 

approach is the one which uses a soft-decision trellis-based or tree-based receiver as the 

inner multiuser receiver. There are a number of possible trellis-based receivers, the most 

important of which are the ML sequence estimator, [1], and the reduced state sequence esti- 

mator (RSSE), [6], [31]. As an example of a tree-based receiver, see [8]. In their standard 

form, each of these receivers output hard-decisions, and so techniques such as those of [29] 

must be applied to allow the inner receiver to supply soft outputs to the outer Viterbi 

decoders. 

This approach has recently been proposed by two research groups, [9], and [30]. Both 

groups cite the prohibitive complexity of the full ML sequence estimator, and examine RSSE 

and sequential decoding alternatives. 

The computation of the AMCG for these approaches remains an open problem. The 

AMCG of the soft-decision partitioned receiver with an ML sequence estimator should have 

a higher AMCG than any other partitioned receiver, since the ML sequence estimator is the 

optimum inner receiver in the sequence error probability sense. It follows that RSSE and 

sequential decoding approaches which do not suffer significantly in performance relative to 

the MLSE will also have a high AMCG. The interested reader is referred to [9] and [30] for 

more detail on these particular approaches. 

4.4 Soft-Decision Partitioned Receiver With a DFE Inner Receiver 

In this approach, a multistage DFE operates on the set of matched filter outputs, by 

making tentative decisions and feeding these decisions back to make estimates of the MUI 

which will be subtracted from other matched filter outputs. The key in the soft code symbol 

DFE (SCS-DFE) approach is that at the final stage, the MUI estimate will again be sub- 

tracted from the delayed matched filter output, but no hard-decision making will be per- 

formed. Instead, the modified matched filter output will be passed straight to the Viterbi 

decoder. 

At this point, we have not committed to a particular type of multistage DFE. As dis- 

cussed in [21], there have been at least six architectures proposed in the literature for 



-15- 
asynchronous CDMA links, [5], [7], [12 - 14], [19 - 21] and [27], and there has also been 

some work on improving the decision making procedure of the algorithms, [16]. 

The performance of this class of approaches is difficult to evaluate analytically, due to 

the presence of error propagation. Expressions for the AME of the Varanasi DFE have 

recently been reported in [17], but the approaches used to get those AME expressions do not 

easily generalize to the coded link case. It is possible to evaluate the AMCG under the 

assumption of correct feedback. However this implies that as long as the correlation parame- 

ters and energies have been perfectly estimated, RMUI = 0. Since there is no residual 

interference if the feedback is correct, and there is no noise enhancement, as in the case of 

the decorrelator, we obtain the result that the AMCG is that of a single-user system. Clearly, 

the presence of error propagation degrades the AMCG by some amount, so the computation 

of the actual AMCG remains an open question. Consequently, simulation will be the perfor- 

mance evaluation technique for this class of receiver. 

Because the structure of the integrated DFE which will be discussed in section 5.3 is 

most like the Varanasi style uncoded link multistage decoder, it is interesting to compare the 

integrated DFE with the Varanasi style SCS-DFE. In addition, because it Was shown in [20 - 

21] that in most cases, the Hybrid DFE outperforms the other two architectures on an 

uncoded link, it is an obvious candidate for use in an SCS-DFE structure. Thus, the struc- 

tures that were simulated were the Hybrid and Varanasi versions of the SCS-DFE. The 

modifications to the decision making devices in each preliminary stage of the multistage 

decoders discussed in [16] were not considered here, although those modifications may pro- 

vide improvements in some cases. 

Figure 9 shows the performance curves for a four-user "0.2 channel". As this figure 

illustrates, the conventional decoder suffers about a 3 dB loss at Pb „^^ = 2-10"3 relative to 

the performance of the same receiver operating in the absence of MUL For this case, the 

Hybrid version of the SCS-DFE outperforms the Varanasi version of the SCS-DFE. This is 

similar to the results obtained on the uncoded link simulated in [20 - 21]. 

Figure 10 shows the performance for a more severe channel. In this figure, it is evident 

that all of the decoders perform significantly worse than in the "0.2 channel" due to the more 

severe MUL In addition, the hybrid SCS-DFE again outperforms the Varanasi DFE. 

Once again, the complexity of the soft-decision partitioned DFE receiver will be of the 

same order as in the hard-decision case. 
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5. Combined Equalization and Decoding Approaches 

In all of the partitioned approaches, regardless of the type, the multiuser receiver 

operates at the code symbol level as though there were no coding on the link, and then passes 

its decisions or improved statistics to an outer decoder. The deficiency with this approach is 

that separating the functions of cancelling the MUI and decoding the message does not take 

full advantage of the coding on the link. The approaches discussed in this section attempt to 

alleviate this shortcoming. 

5.1. Trellis-Based and Tree-Based Combined Equalization and Decoding Approaches 

The MLSE of [25] is a trellis-based approach which combines the functions of equali- 

zation and decoding into one operation. This approach is the optimal sequence estimator. 

The MLSE has a prohibitively high number of states, thus it is natural to look to simplify the 

decoding process by combining states in some fashion. This approach of combining states in 

some fashion is what is referred to as reduced state sequence estimation (RSSE). There are a 

number of publications on the application of RSSE to simplify the MLSE for the uncoded 

case, [6], [31], as well as at least one other on the application of RSSE to simplify the pro- 

cess of equalizing and decoding a coded signal on a single-user dispersive link, [28]. It is 

undoubtedly possible to apply these techniques to the problem at hand to obtain a perfor- 

mance versus complexity tradeoff. 

Just as in [8], it is also presumably possible to use sequential decoding approaches to 

lower the complexity of the MLSE for the coded link case. Sequential decoding would also 

provide the opportunity to tradeoff performance versus complexity. 

One problem with the trellis-based approaches, however, is that they may not be as 

robust to mismatch (a misestimation of the correlation or energy parameters) as some of the 

simpler approaches like the partitioned decorrelator and DFE approaches. In [15], it was 

shown that the uncoded link MLSE was not as robust as a Varanasi DFE to mismatch, in the 

sense that for even small values of mismatch, the suboptimum DFE outperformed the MLSE. 

This high sensitivity of the optimal approach to mismatch is a very undesirable feature, and 

it may very well carry over to suboptimal approaches which are based on the MLSE like the 

RSSE and sequential approaches. Nonetheless, given no mismatch, the trellis-based and 

tree-based approaches have the potential to perform nearly as well as the MLSE, possibly 

with a significantly decreased complexity. 
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5.2 The Decision Feedback Combined Equalization and Decoding Approach:  The 

Integrated DFE 

The idea in the approach we will refer to as the integrated DFE is that the MUI can be 

more reliably estimated by exploiting the coding. Thus, instead of using a hard-decision dev- 

ice in the first stage of a multistage DFE, like that of [5], we may decode the message using a 

soft-decision Viterbi algorithm which operates on the stream of matched filter outputs in the 

/ channel, and then re-encodes the decoded bits to form estimates of the code bits. These 

code bit estimates can then be used to estimate the MUI in other user's channels. Again, as 

in the uncoded case, the decision feedback may be performed for as many stages as is 

desired (see Figure 8) The performance of this approach is difficult to evaluate analytically, 

again due to the presence of incorrect feedback. As a result, simulation will be the perfor- 

mance evaluation technique in this section. 

A characteristic of convolutional codes, or most codes for that matter, is that at very 

low signal to noise ratios, the coded link may perform worse than an uncoded link. When 

the signal to noise ratio is in this regime, it is possible that the Viterbi decoder whose outputs 

are re-encoded to form the ML estimate of the code bit sequence, may perform worse than a 

simple hard-decision device operating on the code bits without regard to the coding. As a 

result of this characteristic, it is important that the combination of the thermal noise and MUI 

is not so strong that the re-encoded Viterbi output sequence is worse than the estimated code 

bits of a simple threshold detector for the integrated DFE to outperform an SCS-DFE. Basi- 

cally, the structure which provides better estimates of the code bit sequence will have a 

better estimate of the MUI in the other channel's multistage decoders. In general, because 

coding generally allows better estimates of the transmitted sequence, it is reasonable to 

expect the integrated DFE to outperform an SCS-DFE of a similar architecture like a SCS- 

DFE with a Varanasi DFE. 

Figure 9 shows performance of the integrated DFE and the various SCS-DFE 

approaches on the "0.2 channel". In this environment, the integrated DFE is able to nearly 

recoup all of this loss, while the various SCS-DFEs are able to only recoup some of the loss. 

It may thus be concluded that the thermal noise and MUI are weak enough to be operating in 

the regime where a receiver which exploits the coding performs better than one which does 

not. 
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Figure 10 shows the performance on a more severe channel. The integrated DFE still 

uniformly outperforms the Varanasi version of the SCS-DFE. For these particular channel 

characteristics, however, the hybrid SCS-DFE is able to outperform the integrated DFE at 

larger values of EIJNQ. While this may seem surprising at first, it is simply due to the fact 

that even though the hybrid SCS-DFE performs separate equalization and decoding, it has a 

high quality first stage which is able to provide better code symbol estimates to the second 

stage MUI estimator than the conventional Viterbi algorithm operating in the first stage of 

the integrated DFE. This case illustrates that when the MUI is strong enough, the integrated 

DFE will not always outperform a well designed SCS-DFE, although it does in most cases. 

To compute the TCB for the integrated DFE, we again assume that the computation of 

the MUI in each stage of the DFE structures is roughly equivalent in complexity to the com- 

putation of one metric in the Viterbi decoder. Thus adopting this convention, we may con- 

clude that for a link with rate 1/ß and constraint length W codes, the /-stage integrated DFE 

has a time complexity of roughly TCB = O ((J-1)Q +J2W). This is significantly higher than 

that of the SCS-DFE, although it is far less than that of the MLSE of [25]. In the general rate 

P/Q code case, if again, K = log25' where S is the number of states in each user's encoder, the 

integrated DFE has TCB = 0([(J-1)Q +J2K+P]/P). Again, because each MUI computation 

grows in complexity with K, we may say that the number of arithmetic operations per 

decoded bit is on the order of OPIDFE = 0([(J-l)QK+J2K+pyP). This is of about the 

same order as for the partitioned SCS-DFE approaches. 

We may thus conclude that the integrated DFE has a larger TCB than any of the SCS- 

DFE approaches, but its complexity as measured in terms of the number of operations 

required per decoded bit is not necessarily higher and its performance is better in most cases. 

As a result, the integrated DFE is an attractive approach. As we have seen in Figure 10, 

however, even the integrated DFE does not perform well when the MUI becomes too strong. 

6. Conclusions 

In this paper, a large number of approaches have been discussed (see Figure 1). The 

approaches can be categorized as linear, DFE and trellis-based, as in Figure 1, or they may 

be categorized as partitioned and combined approaches as they were presented in this paper. 

Throughout this paper, the number of arithmetic operations per decoded bit was used as 

a measure of the complexity of the receivers. It is clear that for a large number of users and 
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large codes, the MLSE and Partitioned MLSE are too complex to be of use. The conven- 

tional approach has the lowest complexity and all of the other approaches have an intermedi- 

ate complexity (linear with K). 

Throughout this paper, the various approaches were compared using the AMCG perfor- 

mance measure whenever possible. When the receivers did not lend themselves to an AMCG 

analysis, as in the case of the DFE's, computer simulations were used to compare their per- 

formance to the important baselines, the single-user bound, the MLSE's performance and the 

conventional receiver's performance. 

An examination of the figures of this paper illustrate that the MLSE of [25] has the best 

performance. The worst performance of any receiver considered was the hard-decision con- 

ventional followed by the soft-decision conventional. The soft-decision partitioned 

approaches with a decorrelator or DFE inner receiver provide reasonable performance and 

have a fairly low complexity. Also, the integrated DFE provided a good compromise of per- 

formance and complexity in the situations considered. 
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All of the partitioned approaches (separate equalization and decoding) can be implemented in a hard or 
soft decision form. 
(The approaches in boxes will be discussed in this paper) 
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Abstract 

The optimal multiuser sequence estimator is formulated for an asynchronous 
direct-sequence CDMA system where each user employs convolutional coding to 
improve its performance on a non-dispersive AWGN channel.  It is shown that the 
decoder may be implemented efficiently using a Viterbi algorithm which operates on a 
time-varying trellis with a number of states which is exponential in the product of the 
number of users in the system and the constraint length of the codes used (for the rate 1/2 
code case). The asymptotic efficiency of this receiver relative to an uncoded coherent 
BPSK receiver (termed asymptotic multiuser coding gain, or AMCG) is then upper and 
lower bounded. The AMCG parameter unifies the asymptotic coding gain parameter and 

the asymptotic multiuser efficiency parameter which are traditional figure of merit 
parameters for single-user coded systems and multiuser uncoded systems respectively. 
Finally, some simulations are presented to illustrate the performance of the MLSE at 

moderate and low bit error rates. 



1. Introduction 

In code division multiple access (CDMA) systems, multiple users transmit, often asyn- 

chronously, over a common communication channel, typically using the direct sequence 

spread spectrum technique. The receiver operating in the AWGN environment receives a 

signal which is the sum of all of the transmitted signals in noise, and the receiver must syn- 

chronize to the desired signal and estimate the desired user's transmitted data. Often, in an 

attempt to improve performance, error control coding will be used on each of the links as 

well. 

The traditional method of coherently demodulating direct sequence CDMA signals is to 

synchronize a local code generator and oscillator to the signal of interest and then to make 

decisions on the received signal as though the desired signal is the only one present. The 

traditional decoder's structure is that of a correlator or matched filter which is matched to the 

desired signal, followed by a decoder if coding is used on. the link. The performance of the 

traditional decoder suffers for two major reasons. First, the signature sequences of the dif- 

ferent users will not be orthogonal to each other, giving rise to multi-user interference, or 

MUI, and second, in the common situation where all of the signals arriving at the receiver 

are of different strengths the strong signals tend to overwhelm the weak signals, even with 

reasonably good signature sequences. This second problem is referred to as the near-far 

problem. 

There has been a large amount of interest recently in the design of multiuser receivers 

for CDMA systems. These receivers jointly estimate the transmitted symbols of all of the 

users in the system, as opposed to estimating them independently. This approach is most 

appropriate for a base station in a multipoint-to-point network where the receiver must 

acquire and demodulate all of the signals in the network. Almost all of the multiuser detec- 

tion work has centered on uncoded links, see for example [1] - [5]. Only recently has the 

problem of multiuser detection of coded links been considered, [6], [11] - [13] and [15]. 

In this paper, the multiuser maximum likelihood receiver will be formulated for convo- 

lutionally coded nondispersive AWGN links. We will see that this receiver performs both 
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the functions of equalization of the MUI and decoding of the code together. Section 2 of this 

paper will outline some of the notation that will be used, and will also define the problem in 

more precise terms. In section 3, we formulate the ML receiver using the rate 1/2 code case 

as an example, and then analyze its performance. 

2. Notation 

It will be assumed that the CDMA system has K users operating simultaneously on a 

common frequency in an asynchronous fashion. In general, it will be assumed that each user 

employs binary convolutional coding on its link. While it is quite conceivable that block 

codes could be used effectively on a CDMA link, convolutional codes have the advantage 

that they operate in a sequential fashion. Because the decoders that will be studied in this 

work are sequential in nature, the convolutional codes are a much better match to the 

decoders than block codes. One further assumption in this paper is that each user employs 

the same convolutional code, although it is not at all difficult to generalize this work to the 

case where each user employs a different code. 

At each time interval of length Ts, the convolutional code is generated for user k by 

passing P binary information bits, lk(n) = (#>(«),..., l[P\n)), through a shift register consist- 

ing of W stages with Q modulo-2 adders. The number of output bits for each P-bit input 

sequence is Q bits. The rate of the code is Rc = P/Q and the constraint length of the code is 

W. The output sequence of binary code bits for the interval corresponding to input bits Ik(n) 

is (D(
k
l\n),...rtQ)(n))- Note that for W = 1 and P = Q = 1, we have the uncoded case, so in 

that case Djt(n)=/jk(n). 

In the time interval [nT$«q-l)T*k,nTs+qT+*k), user k transmits data bit D<?\n), 

where % represents the time shift of the kth user relative to some reference time, thus 

accounting for the asynchronism of the users relative to each other. Trepresents the code bit 

period and Tb = T/Rc is the information bit duration, thus T, = QT = PTb. Let %k = m*T-K*. 

xk e [0,r), and mk e {0,...,Q-1}. Thus mkris a coarse time shift and xk is a fine time shift 

for user k. 

Each user in the system is assigned a particular signature sequence, and it will be 

assumed that this signature sequence has a duration equal to the code bit interval, although 
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this assumption can be relaxed with a change of the notation. We will combine the carrier 

and signature sequence into a single signal, thus the kth carrier multiplied by the binary (± 1) 

signature sequence, PNk(t), will be denoted by 

Skit) = 
tärPNk(t)cos(coct)     0<t£T 

0 otherwise '*' 

The energy of the kth user's code bit measured at the receiver will be denoted by Ek. It will 

be assumed that all K users transmit their signals through a common additive white Gaussian 

noise channel with two-sided noise spectral density N^/l W/Hz, and so the received signal 

will have the following form 

rW= I   Z XDl'Hn)^sk(t-nTs-iq-l)T^lk) + z(t) (2) 

where z (t) denotes the noise. 

Next we define the partial cross-correlation of the known signature sequences j and k to 

be: 

PjkV) = j sjit^tj) sk(t-lT-^k) dt . (3) 

It is worth noting that pyy(0) = 1 and pjk(l) = pkj(-l). 

The base station that will be referred to as the conventional base station on this coded 

link attempts to estimate the kth user's data using only the matched filter outputs for the k,h 

user. It will be assumed that the Viterbi algorithm operating on each user's observed code 

symbols is a soft-Viterbi algorithm having a decoding delay of 5 information symbols, where 

generally 8 will be several times the constraint length, W, of the code. The time complexity 

per decoded bit for this receiver may be estimated by considering the number of metric com- 

putations per information bit decided. If we define the binary memory order of the encoder 

to be K = log25 where S is the number of states of each user's encoder, then there are 2K+P 

metrics computed for every P bits decided, so TCB = 0(2K+P/P). 

As in the uncoded case, there are a number of ways that a multiuser receiver can 

operate to improve upon the performance of the conventional basestation. In the next sec- 

tion, the optimum maximum likelihood sequence estimator will be derived for this problem 
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and analyzed. Because this receiver has a very high complexity, in [11] and [13], a parti- 

tioned trellis-based approach is be introduced, along with a number of multistage decision 

feedback approaches which all have a lower complexity than the optimal sequence estimator. 

3 Optimum Sequence Estimator For Rate-1/2 Convolutional Codes 

The optimal MLSE will now be derived for the special case in which each user in the 

network is employing a rate-1/2 convolutional code with a constraint length of W, so 

j _ jb _ 27. Our limitation to this special case will facilitate considerably the derivation of 

the decoder, and it will then be outlined how the optimal decoder can be derived in a similar 

way for a general rate-P/ß convolutional code case. 

To begin, it is important to note that the optimal sequence estimator or equalizer for 

multiple-user uncoded signals operates in a "round-robin" fashion among all K users in the 

system, [1]. This Viterbi algorithm traverses one trellis stage per channel bit observed. The 

optimal sequence estimator for decoding the rate-1/2 code for one of the users in a single 

user environment, however, is a Viterbi algorithm which requires two channel observations 

from the user of interest to move ahead one stage in the trellis, [14]. The rate-1/2 convolu- 

tional code can, however, be viewed not as a code which produces two binary bits per infor- 

mation bit period, Tb, but as an equivalent trellis code which produces one 4-ary coded 

waveform every Tb seconds. By formulating the equalization problem at the receiver with 

respect to this super-code-symbol view of the received signal, we can accomplish both the 

tasks of equalization and decoding in the same Viterbi algorithm. Because there is only one 

4-ary super-symbol received for each information bit that must be decided, the decoder can 

be formulated in basically the same fashion as was used in [1] for the MUI problem or [7] for 

the ISI problem. 

We begin by defining the following notation. 

1  te[0,T) 
gi(t)=< 

gi(.t)=' 

Next, define a concatenation of coded signals as 

0  otherwise 

1   te[T,2T) 
0  otherwise 
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Dk(t-nTb-*k) = Dil\n)gl(t-nTb^ik)+Di2Hn)g2(t-nTb-*k) . (6) 

Two of the signature-carrier waveforms can likewise be concatenated to form a super- 

signature waveform. 

sk{t-nTb-^tk) = sk{t-nTb-Zk) + sk{t-{i+Vi)Tb-^k) (7) 

This presumes that the signature sequence repeats every code symbol period. The received 

waveform may now be written in terms of these waveforms of duration Tb: 

r(t)= £   IiDk(t-nTb-^k)sk(t-nTb^ck)^Ek~ + z(t) (8) 

This signal may be viewed as a four-valued super-code symbol, {D^WyD^fyi)}, modulat- 

ing a pair of orthonormal basis functions through the procedure defined above. The basis 

functions in this new view of the waveform are 

$ik(t) = gi(t)sk(t) (9) 

and 

$2k(t) = 82(t)sk(t) (10) 

appropriately synchronized with the information bit periods. Thus, this equivalent view of 

the coding process suggests that the information bits are mapped by the encoder onto 

waveforms in a space defined by <J>i*(f) and §&(?)• Note that although the bases defined in 

(9) and (10) are orthonormal, they are not, in general, orthogonal to <|>iy(f) and fo/f) which 

are the basis set for another user in the system, user j, since sk(t) and Sj(t) are not orthogonal 

in general. The result when the received signal is a sum of AT component signals is MUI. We 

now define four parameters which are a measure of the degree of correlation between the 

basis functions of the different users. 

VjkQ) = j <tij(t-<j)«hk{t-lTb-*k)dt (11) 

Y/*(0 = j <M'-*;) Mt-Vb-*k)dt (12) 

wjk(i) = J <M'-*;) M-iTb-*k)dt (13) 

XtfD = J <M'-*/> hk(t-lTb^zk)dt (14) 
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These parameters play the same role in the super-symbol view of the coded signal that p;*(0 

plays for the standard view of the signal. In fact, V, V, W and X can be related to p directly 

by substituting (9) and (10) into (11) through (14). 

Üß(l) = Pjk(2l+mk-mj) (15a) 

VjkV) = Pjk(2l+mk-mj) (15b) 

Wjk(l) = Pjk(2l+l+mk-mj) (15c) 

Xjk{l) = PjkQ.l-^mk-mj) (15d) 

Note that Ö>(0 = Vjk(l) = Wjk(l) = Xjk(l) = 0 for I /1 >1; this fact will play an important role 

in determining the proper state description of the system for the optimal sequence estimator. 

Some other useful properties of the correlation parameters are Ujk(l) = Ukj(-l), 

Vjk(D = VkjH) and Xjk(l) = WkJH). 

Beginning with equation (8), note that by performing a modulo-*: decomposition of the 

index i, namely i =a(i)K+^(.i)-l, and by assuming that the K users transmit (2M+1)/K infor- 

mation bits each in the time interval of interest and that the signal is zero outside of this 

interval, we can write 

r(t)= £ Dm(t-a(i)Tb^m)s^(t^(i)Tb^n)^E^ + z(t) (16) 
i=-M 

We now further simplify the notation by defining the following terms, 

DP=D$t)(a(i)) (18) 

üim = um{mMm)-°-^ (19) 

Vim = WrfoC*)-^)) <20) 

W,m = WP(1)ß(m)(a(m)-a(/)) (2D 

Xim=Xwmm)(a(m)-a(i)) (22) 

We have now laid the foundation for the derivation of the MLSE. This development 

will closely follow the derivation of the optimal MLSE in [7] and [8] for the uncoded ISI 

channel. 
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By expanding (16) with a Karhunen-Loeve expansion and letting the dimensionality of 

the expansion grow, we obtain the following waveform metric: 

MPM) = " J (r(th 2 DP*m(t^)Tb^)^+DP^it^i)Tb^)tiz^2dt (23) 
M 

X 
i=-M 

We next define: 

r?) = r<£})W))= jr(t)^mi)(t-a(i)Tb-^m)dt (24) 
ee 

and 

4M 

'P = r$ («(»')) = J r m2m(t-a(i)Tb-*m)dt (25) 

which represent the outputs of a pair of matched filters or correlators for the basis functions 

for user ß(«) at time t = (a(i)+l)Tb+xm. By expanding (23), and then collecting the 

appropriate terms we get the following metric: 

A(Ä) = A(DM) + 2 [DP<E^ (rf»> - ^{DP ft w +D$ WUJ<EW) 

L 

I + DP>VBW (rp) -^Z)(L^lM +DQ VU-JJEW)] (26) 

where £>,- represents the multiuser code-symbol sequence up to time interval i, and L is the 

smallest integer such that for every L'>L we have Üjk(a(L')) = Vjk(a(L')) = Wjk(a(L')) = 

Xjk(a(L )) = 0. We have already seen that the correlation parameters are zero when 

\a(L)\>l,soL=K-l. 

There are a number of important observations that can be made from the path metric 

given in equation (26). First of all, the i* stage metric depends only on the code symbols in 

the set 

S = {D?\ D?\ DP,,Z>P_\,..., DPK+l, DPK+l}, (27) 

along with the matched filter outputs, rP and r|2), as well as the signal energies and correla- 

tions. It is possible to estimate the crosscorrelations using the local oscillators and code gen- 

erators which are assumed to be synchronized to the K components of the incoming signal. 

We can also estimate the energies, {E(i)} by averaging the outputs of the matched filters for 
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a number of bits. (The number over which they would be averaged would depend on the rate 

at which the relative strengths of the users is varying.) 

For any user, k, the convolution^ encoder defines a mapping rule from the input infor- 

mation symbol and present state of the encoder to the code bits, D^Hn) and I>P(n). If we 

define h (•) as the mapping rule from the input information symbol and state to the 4-ary 

super-code symbol, [D$\n), DJP(n)} then by substituting the information symbols that 

define the state of the encoder in for the state, the following expression may be written: 

{DV\n), D<k2\n)}=h[Ik(n), Ik(n-1),..., Ik(n-W+1) ] (28) 

Thus, in this form, it is clear that the 4-ary super-code symbol depends on only W informa- 

tion symbols. Using this information, it is easy to redefine the set S which was defined in 

equation (27) in terms of the information symbols which affect the ith stage metric. 

3 = {/,,<*,} (29) 

<J« = Ui-l. J/-2» • • •» li-WK+l ) (30) 

where /,- =/ß(,)(a(/)). Thus it is now apparent that the system may be described in terms of 

2WK~1 states, since the information symbols are binary. Furthermore, the maximum likeli- 

hood sequence estimator can be implemented with a Viterbi algorithm operating on a trellis 

with 2wx:~1 states and two branches per state. This trellis will be cyclically time-varying as 

in the uncoded case, [1]. Furthermore, it is clear that this trellis reduces to the trellis 

derived in [1] when the constraint length of the code is one (uncoded transmission for each 

user). Obviously, the number of states in the MLSE grows very quickly with both the 

number of users in the system and the constraint length of the codes being used. In fact, for a 

simple 4-user case where each user uses a W = 3, or 4-state code, the MLSE requires a 

Viterbi algorithm operating on a trellis with 2048 states! 

The time complexity per bit decoded for the multiuser MLSE is TCB = 0(1WK) since 

there are 2-2wxr"1 metrics which must be computed at each stage of the trellis and one infor- 

mation bit is decided at each stage. Note that for the case of W = 1, the TCB calculated in 

[1] is again obtained. 

Now that the MLSE has been derived for the rate-1/2 case, it is straightforward to gen- 

eralize to the case of rate-P/ß convolutional codes. The function Ät(0 will again have to be 
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constructed from a set of orthogonal basis functions. One reasonable choice would be a set of 

Q non-overlapping pulses, each of duration T. Again, the function sk(t) would be con- 

structed from concatenations of Q versions of •$*(*)• The metric derivation could then 

proceed in the same fashion as in the rate-1/2 case. There are 2P input hypotheses to test in 

each Ts for each user, so the overall trellis will have 2P branches per state. Furthermore, the 

state of the system will be specified by (K+P)(K-1)¥K information bits, so it will have 

ycK+PK-p states> where K = log25 and 5" is the number of states in the single user's encoder. 

This will result in a TCB = 0 (2KK+PK
/P). 

Clearly the exponential dependence of the TCB on the number of users, the number of 

states in each of the user's codes and P makes the use of the optimal decoder prohibitive for 

a realistic system. It is, however, an important receiver because it represents the best that 

can be achieved in terms of sequence error probability, and it will provide a good baseline by 

which to judge the quality of suboptimal schemes. This receiver also raises the possibility of 

using a variety of sparse searching algorithms like a sequential decoder as was used in [5] for 

the uncoded case, or reduced state sequence estimation techniques like the one proposed in 

[4] for the uncoded MUI equalization problem or [9] for the combined equalization and 

decoding problem for single-user links suffering from ISI. 

3.1 Performance of the Optimal Sequence Estimator 

To illustrate the derivation of some performance bounds for the MLSE, we will again 

use the rate 1/2 code example. In this analysis we will fairly closely follow the analysis 

which appeared in [1] and [7]. In keeping with [1], we consider the decoding window to 

range from the index -M to the index M. The goal of this section is to estimate the perfor- 

mance of the optimal sequence estimator by bounding the finite and infinite horizon error 

probabilities for the kth user in the system, denoted P%(n) and Pk = lim P^(n). 

Consider the transmission of the sequence of super-code symbols, D- 

{D[l\ D\2)}fL-M, and a competing sequence in the trellis D+2e corresponding to the 

sequence {£>|1)+2ei1), D\2)+2e\2)} ?=-M where e= {e\l), e\2)) *L_M is a sequence of code 

error symbols. Each e\q) can take on values in the set G = {0, ±1}. Next, define the follow- 

ing sets: 
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B = { e: eiq)(n)<=G, /i=a(-M),...,a(M), 

Jt=l,...,lSr, ?=1,2, eiq)(n)*Q for some n,k,q } 

A(D) = {e:eeB,D + 2eeC } 

C = {D:Deh({l})) 

(3D 

(32) 

(33) 

where h (•) is the mapping rule defined by the code from an information sequence, /, to a 

sequence of super-code symbols, D, as in (28). Since this mapping rule is a one-to-one func- 

tion, it has an inverse. If we define the information error sequence 

y = h-l(D + 2e)-l (34) 

which is the information bit error sequence corresponding to D +2e such that if D = h (/), 

then Z>+27 = &(/+¥)• This allows us to define 

AJf(D,n) = {7: e e A (D), %(nM)} (35) 

so AJf(D,n) is the set of admissible error sequences which affect the nth information bit of 

the kth user. From these definitions, it follows that the probability of error for the nth bit of 

the kth user is given by 

■>Mrw,\ ^ Pf(n)= £ P u     {A(Z> +27)>A(D) ID sent} >M PM(D sent) (36) 
DeC    LeeAjftD.n) 

As is the usual approach, we choose to bound (36) with a union bound. 

Pk(n)<. £       X_   P(A(P+2e)>A0)\D sent)-PM(D sent) (37) 
DeC eeAf(D,n) 

The event A(D + 27) > A(D) may now be written by expanding equation (23) and substitut- 

ing 

i+K-l , — _ ...    i—— _ 
(38) rP=r^(a(/))= '£  {D^<E^Üij+Df<E^Wij)^z^ 

j=i-K+l 

and 

i+K-l 
r<2) = rg>(o(0) = "£ * (D^iE^Xij + Z>j*W*W Vy) + *P> (39) 

for ri1} and r\2) respectively, where z\l) and z\2) are the noise variates at the output of the 

matched filters for the basis functions 4»1K0 and <t>2P(f) respectively for the interval oc(/). After 
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some algebra, the following expression for the event A(Z> + 21) > A(D) is obtained. 

E    Z (ePeWUb. + e?\%Vim + ef »eg)** + ePefl^) V£^>~ 
«=-Mm=-Af 

z <   xVi^CelV + ePzP) (40) 

Let A2 (7) represent the left side of equation (40). The right side of equation (40) is a linear 

combination of Gaussian random variables, z\l) and zj2). It is not difficult to show that 

E[z\l)]-E[z\2)] = 0 and also that 

:(D1 

,(2) kWzffi 2 
U     W- uun    "im 

X un 
(41) 

As a result, if we define y to be the right side of equation (40), then it is not difficult to show 

that E [y]=0 and War [y]= A2(7) • NQ/2. 

Next, the two-sequence error probability, or the probability of the event given in equa- 

tion (40), becomes the probability that the Gaussian random variable, y, is larger than the 

threshold, A2(e). We next define the following efficiency parameter for the pair of 

sequences separated by the code symbol error sequence, e, as 

ltk &bk 

where E^ = 2Ek is the energy per information bit for user it. This allows us to write 

(42) 

P(A(D+2e) > A(Z>) I D sent) = Q 4 ̂*nf(F) 
#0 

(43) 

so T|jt (?) is the asymptotic efficiency relative to uncoded BPSK transmission for the kth user 

for the pair of sequences D and D +21. This can be shown to reduce to the form of the dis- 

tance measure in [1] for the uncoded system, because as in [1], A2(?) may also be expressed 

as the L 2 norm of the signal generated by modulating the error sequence. 

In order to construct a lower bound on the probability of error for user k, we define the 

following minimum efficiency as 

,w ,Af/ r\%min(n) = inf      inf_   T\F(e) 
DeC eeA?(D,n) 

(44) 
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so that 

,M M Pf(n)>P[Tif(?)=<m/n(n)]-ß V? 2Ebkn%mM (45) 

Thus we now have a lower bound expression for Pf (n) given in (45), and when (43) is sub- 

stituted into equation (37) we have an upper bound on Pjf(n). 

To obtain bounds for the infinite horizon error probabilities we may conclude exactly as 

in [1] that the infinite horizon efficiencies T\k(e) and y\k,min are achieved by finite length error 

sequences. As a result, the infinite horizon error probability for the kth user may be lower 

bounded by 

J2^ 
V  N0 

Pk>P[r\k(e)=T\k,min]-Q 

Similarly, by passing (37) to the limit as M approaches infinity 

Pk^X       2    P(Dsent)-Q<JE 
DeC eeAt(D,n) *   N 

Mk,min (46) 

2Ebk %(*) (47) 

where Ak(D,n) = lim A$f(D,n). We should note that (47) may not converge for all noise 

levels. In [1], the convergence region was increased by limiting the inner sum to the set of 

indecomposable sequences. This solution perhaps would be of use here as well to obtain a 

tighter upper bound, however, we will not focus on this issue here because the convergence 

of (47) will not affect the rest of our analysis. 

In the high signal-to-noise ratio regime, the terms in (47) with the minimum efficiency 

will dominate the asymptotic behavior of the receiver. As a result, we will refer to the 

minimum efficiency, T|jt>mfo as the asymptotic multiuser coding gain for user k (AMCG). The 

AMCG is an efficiency parameter which is a measure of the energy gain or loss of the 

receiver relative to an uncoded BPSK system operating in isolation with an energy per infor- 

mation bit of Ebk. 

In the limiting cases where there is only K = 1 user in the system, or when there are K 

users in the system with perfectly orthogonal super-signature sequences, then r\k,min is the 

asymptotic coding gain (ACG) of a single-user system operating with the same code. In the 
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limiting case where the users do not employ coding, y\k,mm is equivalent to the asymptotic 

multiuser efficiency (AME) obtained in [1] for the optimal multiuser receiver for the uncoded 

system. Thus the asymptotic multiuser coding gain unifies the asymptotic coding gain and 

the asymptotic multiuser efficiency parameters. 

The equation for Tjjt(F) may be rewritten in the form of a quadratic form, 

T|*(*) = «r EYHYEY^T' 
2£* 

(48) 

To do this, we define the vector ej- to be the subvector of the infinite length error sequence e 

which consists of all of the nonzero components of 1 and all zero components of 7 which are 

surrounded by nonzero components. If we assume that the dimension of the vector 7p is 

2Tx 1, and 

-er = frg>.eg>.«Cli.«&i eiSr-i.«©r-i f W 

then the matrix HT is defined as HT = [ffjdjjti"1 where the sub matrices are given by 

#* = (50) 

Thus, HY has dimensions 2Tx 21*. Also, Er is a diagonal energy matrix with diagonal ele- 

ments Ejj = (Eft/))*4 • 

As an example, consider the 2-user case where each user employs a rate 1/2, 4-state 

convolutional code, as is shown in Figure 2. If user 1 sends an all zeros sequence, and user 2 

sends all zeros except for stage I'O, where a 1 is sent, then a valid error sequence is 

76 =(-1-1110-101 -1-11 if. (51) 

For this case, assuming that m\ = m2 = 0 so that \ = X\ and %i = Xj, the H^ matrix takes the 

form 

H6 = 

1 0 (>JI(0) 0 0 0 0 0 0 0 0      0 

0 1 Pad) P2i(0) 0 0 0 0 0 0 0      0 
a<0) PJl(l) 1 0 0 0 0 0 0 0 0      0 
0 Pad» 0 1 Pad) 0 0 0 0 0 0      0 
0 0 0 P2ld) 1 0 Pu(0) 0 0 0 0      0 
0 0 0 0 0 1 Pn(0 PIICJ) 0 0 0      0 
0 0 0 0 Piifl>) Pa a> 1 0 0 0 0      0 
0 0 0 0 0 P»(0) 0 1 Pl!(l) 0 0    o 
0 0 0 0 0 0 0 Pad) 1 0 PMG»    0 
0 0 0 0 0 0 0 0 0 1 Pad) Pa(0) 
0 0 0 0 0 0 0 0 P2l(0)  Pl|(l) 1      0 
0 0 0 0 0 0 0 0 0 Pli(0) 0       1 
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and if the users have equal energy, then the effective efficiency for this error sequence is 

Th(e) = V4«£ff6?« = 5-5p21(0)-3p21(l) (53) 

This implies that for this particular case, a necessary condition for the MLSE to have an 

asymptotic loss relative to a single-user system is 

Th(7) = 5-5p21(0)-3p21(l) < df/2 (54) 

implying that because the free distance of the code in use is dj = 5, if 

P2i(0) + jP2i(D>{ (55) 

then the MLSE will not achieve a single-user performance level as NQ/2->0. 

In the same case, if the user's energies are not equal, 

5     5E2 

l 

E.™ 
yP2i(0)+fp2i(D (56) 

This may be considered to be an upper bound on r|i>m,n since the minimum over all valid 

error sequences is no larger than the r\k(e) for a particular valid error sequence. 

In general an interesting result is obtained when we examine r\k(e) for e sequences 

involving only single-user errors. Note that for every ee Ak(D,n) such that every nonzero 

element of e corresponds to user k, (in other words, only user k is involved in the error event) 

i    r_T_ _ i wtk[e] 
TUGD = -^-eMHrErer = j£*k<wt PI = —j— (57) 

where wt\e] is the weight or number of nonzero elements of e (or equivalently cp), and 

wtk{e] is the weight of user Jfc's subsequence of e. (User k's subsequence is the set of all 

{e\l\ e\2)} in 7such that ß(i) = it.) Because 

min       wtk[e]     df 
eeAk(D,n) = -*- (58) 

DeC l l 

we have the result that T|*(e) > df/2 for every 7 € Ak(D,n) such that every nonzero element 

of e is contained in user fc's subsequence. 

This result is important because it implies that single-user error events are not responsi- 

ble if the AMCG is less than the ACG of a single-user system. We thus must examine 
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multiple-user error events to find T|fc(?) < df/2, which is the ACG for a rate 1/2 convolu- 

tional code. 

In general, the computation of iumi„ involves a search over all eeA^D^) for each 

DeC reference sequence. Rather than attacking this problem directly, in this paper we will 

lower bound the worst-case efficiency for the 2-user situation, and will then illustrate some 

nice properties of the MLSE using this bound. 

By studying the Hj- matrix for this 2-user case, we can obtain a lower bound on the 

result of equation (48) in the following way. Every nonzero element of ?r will multiply its 

corresponding element of er, the corresponding diagonal element of //p and be weighted by 

the energy for that element We thus have, as a part of the result of (48), the weight of user 

l's error subsequence multiplied by E\ plus the weight of user 2's error subsequence multi- 

plied by E2. The remaining terms in the result of (48) are due to the product of elements of 

?r with other elements of ?r, weighted by the off-diagonal elements of Hj- and (E\E2)x/l. If 

we lower bound the sum of these off diagonal terms by a number that is smaller than is 

achievable by the actual off-diagonal terms, then we have a lower bound on equation (48). 

One possible lower bound on the off diagonal terms leads to the following expression which 

is only a function of the weight of the error sequences. It turns out that this expression is, in 

most situations, a somewhat loose lower bound on T|*(?). We will focus on the performance 

of user 1 without any loss in generality. 

Ti1(?)^min{/[(E2/£1)
,'4,wr1rj],W/2^]^. d/2 ) (59) 

where 

^E2/Exttwt i{elwt2{e],^ = Vi(wf if?] + -^wt2{e] - 

(£2/£1)
,^(2min{wr1[?],W/2[?]}+2)C) (60) 

and where C, = I p2i (0) I + I p2i (1)1. The function / (•) is a lower bound on T| i (?) as long as 

? has wt\\e] > 0 and wt2[e] > 0. We have already seen from (57) and (58) that d/2 is a 

lower bound on T|i(?) when wt2\e] = 0, so the smaller of these two expressions is less than 

Th(?) for all eeAk(D,n). 
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For a fixed set of crosscorrelations and signal energies, thus a constant C, and constant 

"JE2/Ei, the function f(yJE2/Ei ,wti[e], wt2[e],Q describes a family of parabolas, one 

for each value of wt \ [?] and wt2[e]. It is easy to show that 

wt (e)e?^Vi,...} fa^E^^t^wt^T]^ =/[(E2/£i)V/,^ (61) 
wt2(e)e{d/,df¥l,...) 

This result implies that 

-J|Tc.<*/ = min{/ *^±,df,df£ , d/2) (62) 

which means that we have lower bounded the AMCG by a function which depends only on 

the user's energies, crosscorrelations and the free distance of the code. This bound on 

Tli.iwn is valid only for the 2-user, rate 1/2 code case, but it will illustrate some very impor- 

tant features of the performance of the MLSE which should remain true for the general K- 

user, rate P/Q code cases as well. This bound will illustrate these performance features 

without requiring a solution to the NP-hard problem of searching for the actual error 

sequence, e, and corresponding reference sequence, D, which achieve the actual T|liOT,B. 

The first feature of the bound in (62) may be noted by examining the plot of F(-) as a 

function ^E2/Ei shown in Figure 3 for £ = 0.6 and d/=5. As the interfering signal 

strength, E2 becomes small relative to E\, F(-) approaches the ACG of the single user sys- 

tem. Also, as E2 becomes large relative to E\, F(-) again reaches the ACG of a single user. 

In fact, for 

(E2/Ext > 2C~^- 
df 

(63) 

the MLSE necessarily will have the same asymptotic performance as that of a single-user 

system. In fact, because F(-) is only a lower bound on the AMCG of the receiver, the actual 

energy ratio above which single-user performance is achieved may be significantly lower 

than the threshold given in (63). This point may be illustrated by the dotted line in Figure 3 

which is the actual plot of rj^) for the e given in equation (56). Without performing the 

search for T|limi„, we do not know whether the r\\(je) shown for that particular ? is the 

minimum, but if it is, then the actual threshold for ^E2/Ei  above which single-user 
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asymptotic performance is achieved would be 0.96. 

Another interesting feature of the bound in equation (62) is that it provides a lower 

bound on the near-far resistance of the MLSE, which is defined as the infimum of T\n,min over 

the energies of the interfering users. [3] This infimum for the function F(-) is 

inf       r\k.min* inf      F\(PrfEiT&,dA = 

which is positive for 

inf       r\k,min * inf      F[{E2/E{fA^d}=^--^-^\)2      (64) 

C=lp2i(0)l + lp2i(DI<T^- (65) 

A strictly positive near-far resistance implies that the receiver will have an error rate that 

goes to zero at the same exponential rate as a single-user system operating with an energy 

penalty of T\hmin. 

It is also interesting to note that as the code which is employed becomes more powerful, 

or as df increases, the conditions on the crosscorrelations of the users becomes progressively 

less restrictive to achieve near-far resistance. In other words, a stronger code allows the 

MLSE to remain near-far resistant on a channel with more severe MUI than would be possi- 

ble with a weaker code. Again, however, because F(-) is simply a lower bound on T\k,min> 

the actual AMCG may be positive when the minimum of F(-) is not. Nonetheless, the fact 

that (65) implies a positive lower bound is an interesting feature of the bound in (62). 

3.2 Simulation Results 

To provide some direct comparisons between the performance of the MLSE and the 

conventional receiver in terms of bit error rate at a moderate to low EIJNQ, we will use a 

computer simulation for some two-user cases. Figure 4 shows the results of a simulation of a 

two-user system where each user employs a 4-state rate 1/2 convolutional code. The result- 

ing super-trellis used by the MLSE has 32 states. Figure 4 illustrates a severe MUI environ- 

ment where Pi2(0) = 0.3 and Pn(-1) = 0.3. In this case, the MLSE is able to recoup almost 

all of the loss that the conventional decoder suffers when compared with the performance in 

the single-user environment In Figure 5, the same 0.3 channel is simulated for a varying 

near-far energy ratio. This figure shows that the MLSE approach achieves a single-user 
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performance level for sufficiently strong or sufficiently weak interference. This result is sup- 

ported by the asymptotic performance suggested by the bound in Figure 3. In addition, equa- 

tion (64) suggests that the MLSE is near-far resistant for this case, since £ = 0.6 and df = 5. 

Also, the upper bound on the AMCG in Figure 3 suggests that there is not necessarily an 

asymptotic loss for the MLSE relative to the single-user performance level in the equal- 

energy case since the AMCG is upper bounded by 2.5 at an energy ratio of one. This is sup- 

ported by the simulation in Figure 4. 

It is worth noting that all of the performance analysis in this paper has been based upon 

the metric for the case where each user in the system employs rate-1/2 convolutional codes. 

The expression for the distance and asymptotic multiuser coding gain will be more compli- 

cated in the general rate-P/Q code case, but the derivation procedure will be the same. Thus 

the work in this paper is meant to illustrate the general procedure for the error analysis of the 

more complex general code rate case. 

4. Conclusions 

In this paper, the maximum likelihood sequence estimator was formulated for CDMA 

systems where each user employs a convolutional code to improve its performance. It was 

shown that the complexity of the MLSE depends exponentially on the number of users in the 

system, the number of states in each user's encoder and the number of input information bits, 

P. This high complexity points to the use of suboptimal approaches to attempt to attain high 

performance levels with a more reasonable complexity, such as reduced state sequence esti- 

mation approaches [15], sequential decoding approaches (currently under investigation by 

the authors of [16]), linear approaches, [6] and [13], or multistage decision feedback 

approaches, [11] and [13]. 
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Figure 1 Maximum Likelihood Sequence Estimator for a convolutionally encoded CDMA system. 

(CE: convolutional encoder) 
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Figure 2 Rate 1/2,4-state convolutional code. 
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Figure 3 Plot of lower bound on Th m4l for the 2-user, p2i(0) = p2i (1) = 0.3 case with each user employing 
the code shown in Figure 2. Also shown is the actual x\i(e) for the specific error event given in equation 
(51). 
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Figure 4 Performance curves of the MLSE (dotted line) for a 2-user channel with p12(0) = 0.3 and 
p12(-l) = 0.3 and equal energies. The solid lines show a single user system (no MUI) with and without the 
rate-1/2 4-state convolutional code. 
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Figure 5 Near-far ratio performance curves of the MLSE on a 2-user channel with p12(0) = 0.3 and 
p12(-l) = 0.3 at Ebi/No = 2 dB. The single-user system performance level (no MUI) with the rate-1/2 4- 
state convolutional code is shown as a solid line and the MLSE performance is shown as a dotted line. 
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